Outline	Introduction	IN interface	Droplet	Corsening	Future work

Some Outstanding Problems in Liquid Crystal Physics

Amit Kumar Bhattacharjee

Asutosh College, Kolkata

April 21, 2022

Outline •	Introduction 0000	IN interface 00	Droplet O	Corsening 0000	Future work
Organiza	tion				

- Background of nematic mesophases; statics and kinetics.
- **2** Numerical techniques and benchmarks.
- Biaxiality of the isotropic-nematic interface; effect of rotational anchoring.
- Shape of nematic bubble in isotropic background.
- Phase ordering through spinodal kinetics.
- Ongoing work.
- Publications.

Outline O	Introduction •000		IN interface	Droplet 0	Corsening 0000	Future work
Backgrou	und of Nema	togens				

- Anisotropic molecules (rods,discs) having long range orientational order devoid of translational order.
- Rotational symmetry about the direction of order, *uniaxial* phase $(\mathbf{n} \leftrightarrow -\mathbf{n})$.
- No rotational symmetry : *biaxial* order($\mathbf{n} \leftrightarrow -\mathbf{n}, \mathbf{l} \leftrightarrow -\mathbf{l}$).
- Alignment tensor order have five degrees of freedom, 2 degrees of order and 3 angles to specify principal direction.

•
$$Q_{ij} = \frac{3}{2}S(n_in_j - \frac{1}{3}\delta_{ij}) + \frac{T}{2}(l_il_j - m_im_j)(i, j = x, y, z).$$

0	0000	0	00	0	0000	000				
Statics	Statics : Free energy, phase diagram									

$$\mathcal{F}[\mathbf{Q}, \nabla \mathbf{Q}] = \int d^3 \mathbf{x} \left[\frac{1}{2} A Tr \mathbf{Q}^2 + \frac{1}{3} B Tr \mathbf{Q}^3 + \frac{1}{4} C (Tr \mathbf{Q}^2)^2 + E' (Tr \mathbf{Q}^3)^2 + \frac{1}{2} L_1(\partial_\alpha Q_{\beta\gamma}) (\partial_\alpha Q_{\beta\gamma}) + \frac{1}{2} L_2(\partial_\alpha Q_{\alpha\beta}) (\partial_\gamma Q_{\beta\gamma}) \right].$$

Outline O	Introduction	IN interface 00	Droplet O	Corsening 0000	Future work
Kinetics					

• Landau-Ginzburg model-A dynamics for non-conserved order parameter.

•
$$\partial_t Q_{\alpha\beta}(\mathbf{x},t) = -\Gamma_{\alpha\beta\mu\nu}\frac{\delta\mathcal{F}}{\delta Q_{\mu\nu}}$$
, where
 $\Gamma_{\alpha\beta\mu\nu} = \Gamma[\delta_{\alpha\mu}\delta_{\beta\nu} + \delta_{\alpha\nu}\delta_{\beta\mu} - \frac{2}{d}\delta_{\alpha\beta}\delta_{\mu\nu}].$

$$\partial_{t}Q_{\alpha\beta}(\mathbf{x},t) = -\Gamma \left[(A + CTrQ^{2})Q_{\alpha\beta}(\mathbf{x},t) + (B + 6E'TrQ^{3})\overline{Q_{\alpha\beta}^{2}(\mathbf{x},t)} - L_{1}\nabla^{2}Q_{\alpha\beta}(\mathbf{x},t) - L_{2}\overline{\nabla_{\alpha}(\nabla_{\gamma}Q_{\beta\gamma}(\mathbf{x},t))} \right]$$

Route to equilibrium ⇒ nucleation kinetics above T*, spinodal kinetics beneath T*.

•
$$Q_{\alpha\beta}(\mathbf{x},t) = \sum_{i=1}^{5} a_i(\mathbf{x},t) T^i_{\alpha\beta},$$

 $\mathbf{T}^1 = \sqrt{\frac{3}{2}} \, \overline{\mathbf{z}} \, \overline{\mathbf{z}}, \, \mathbf{T}^2 = \sqrt{\frac{1}{2}} (\mathbf{x} \, \mathbf{x} - \mathbf{y} \, \mathbf{y}), \, \mathbf{T}^3 = \sqrt{2} \, \overline{\mathbf{x}} \, \overline{\mathbf{y}}, \, \mathbf{T}^4 = \sqrt{2} \, \overline{\mathbf{x}} \, \overline{\mathbf{z}},$
 $\mathbf{T}^5 = \sqrt{2} \, \overline{\mathbf{y}} \, \overline{\mathbf{z}}.$

Outline O	Introduction ○○○●	IN interface	Droplet O	Corsening 0000	Future work
Problems	s at a glance				

Outline O	Introduction 0000	Numerics	IN interface 00	Droplet O	Corsening	Future work		
Numeric	Numerical techniques							

- Method of lines
 - Spatial finite difference discretization.
 - Temporal integration using standard library.
 - Benchmark of tanh interface, ellipsoidal droplet, corsening.
 - Performed in 2D on lattices, ranging from 256² to 1024².
 - Performed in 3D on lattices, ranging from 64³ to 256³.
- Spectral methods
 - Space discretized on chebyshev grids $x_j = cos(\pi j/N)$.
 - Global interpolation retaining the spectral accuracy.
- High-performance computation
 - Domain decomposition of the differentiation matrix and vector on a parallel cluster using standard library.
 - Structured binary data storage using standard library.

Outline	Introduction		IN interface	Droplet	Corsening	Future work
O	0000		●0	0	0000	000
Isotropic-Nematic interface						

- Verification of "de Gennes ansatz" and limitations using method of lines.
- Biaxial nature of IN interface with planar anchoring using spectral method.

Outline O	Introduction 0000	IN interface	Droplet O	Corsening 0000	Future work 000
Contd					

• Director anchoring at the interface with tilted anchoring at boundary.

Outline O	Introduction 0000		IN interface	Droplet •	Corsening 0000	Future work 000
Nematic	droplet in iso	o <mark>tropic bac</mark> l	kground			

- Nematic bubble grow or shrink in the nucleation regime.
- Contribution from the anisotropic surface tension ⇒ shape change from circular to ellipsoidal.
- No approximation of surface free energy which automatically included in our formulation.
- Consequences : nucleation rate ($\propto e^{-B/k_BT}$) can be calculated exactly, apart from the prefactors.

Outline O	Introduction 0000		IN interface	Droplet O	Corsening •000	Future work
Phase or	dering kine	etics				

<u>2D</u>

- Visualization and topological classification of point defects.
- Structure of defect core of different homotopy class.
- Dynamical scaling exponent.

<u>3D</u>

- Line defects in nematics; intercommutation of defect segments.
- Oirector configuration around the segment.
- Iopological rigidity in biaxial nematics.

Outline	Introduction		IN interface	Droplet	Corsening	Future work
O	0000		00	O	•000	000
Phase or	dering kinet	ics				

<u>2D</u>

- Visualization and topological classification of point defects.
- **②** Structure of defect core of different homotopy class.
- Oynamical scaling exponent.

<u>3D</u>

- Line defects in nematics; intercommutation of defect segments.
- Oirector configuration around the segment.
- Iopological rigidity in biaxial nematics.

Outline O	Introduction 0000		IN interface 00	Droplet O	Corsening •000	Future work
Phase or	dering kine	tics				

<u>2D</u>

- Visualization and topological classification of point defects.
- **2** Structure of defect core of different homotopy class.
- Oynamical scaling exponent.

<u>3D</u>

- Line defects in nematics; intercommutation of defect segments.
- O Director configuration around the segment.
- Topological rigidity in biaxial nematics.

Outline	Introduction	IN interface	Droplet	Corsening	Future work
O	0000	00	O	0000	000
Defects in	n nematics				

- uniaxial nematic defects are characterized through
 π₁(S²/Z₂) = Z₂, having unstable integer and stable half integer
 charged defects.
- biaxial nematic defects are characterized through
 π₁(S³/D₂) = Q₈, having a stable integer (*C*₀ class, 2π rotation
 of director) and three half-integer (*C_x*, *C_y*, *C_z*, π rotation of
 director) charged defects.
- Defects are visualized and classified through scalar order (movie).
- Textures (intensity $\propto sin^2[2\theta]$) show a subset while all the half-integer defect locations are identified in $S(\mathbf{x}, t), T(\mathbf{x}, t)$.

Outline	Introduction	Numerics	IN interface	Droplet	Corsening	Future work	
O	0000	O	00	O	00●0		
Core structure; dynamical scaling							

• Uniaxial dynamical scaling exponent $\alpha = 0.5 \pm 0.005 [L(t) \sim t^{\alpha}].$

Outline O	Introduction	IN interface 00	Droplet O	Corsening 000●	Future work 000
Line defe	ects in 3D				

- Point defects in 2D correspond to strings in 3D.
- Annihilation of point defect-antidefect correspond to formation and disappearance of loop.
- Line defects pass through each other through intercommutation i.e. exchanging segments (movie ; isosurface set to 0.054).
- Intercommutation of lines depend on the underlying abelian nature of the group elements of that particular homotopy group (Poenaru et.al. '77).
- No such signature seen in biaxial nematics !!

Outline	Introduction	IN interface	Droplet	Corsening	Future work
O	0000	00	O	0000	●00
Ongoing	work				

- Nucleation kinetics in fluctuating nematics; nematic bubbles in 3D.
- Scaling exponent in 3D uniaxial and biaxial coarsening nematic (d=3,n=3).
- Scaling exponent of uniaxial nematic with space and spin dimension 2 (d=2,n=2).
- Topological rigidity in biaxial nematics ? Interplay of energetics over topology.

Outline O	Introduction 0000	IN interface	Droplet O	Corsening 0000	Future work ○●○
Publicati	ons				

- Method of lines for the relaxational dynamics of nematic liquid crystals, PRE **78**, 026707 (2008).
- Biaxiality at the isotropic-nematic interface with planar anchoring, arXiv : 0906.2899 (submitted to PRE, Rapid Comm.).
- Simulation and visualization of disclinations in nematic liquid crystals (to be submitted in "Soft Matter").
- Nucleation kinetics in fluctuating Landau-de Gennes theory for uniaxial nematics (in preparation).
- Effect of general anchoring of the director on the isotropic-nematic interface (in preparation).

roduction	iumencs i	IN Interface	Droplet	Corsening	Future work
					000

Thanks for your attention