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 Introduction and overview     Computer architecture and organization, memory and

Input/output devices.

 Basics of scientific computing    Binary and decimal arithmetic, Floating point 

 numbers, algorithms, Sequence, Selection and Repetition, single and double 

 precision arithmetic, underflow & overflow - importance of making equations in terms

 of dimensionless variables, Iterative methods.
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Course Marks : TBD; Credits - 2
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History of Computer      Invented by Dr. C. Babbage, a Mathematics Professor in 

                                     19th century. 

1st Generation (1937 – 1946)     Dr. J.V. Atanasoff & C. Berry – “Atanasoff Berry 

     Computer” (ABC) → Collosus-1943 (first computer for millitary) → Electronic

     Numerical Integrator & Computer (ENIAC)-1946 (28k Kg weight, 18k vaccum

     tubes, single task machine without OS).

2nd Generation (1947 – 1962)     Universal Automatic Computer (UNIVAC1)-1951

     for public using Registers → International Business Machine (IBM) 650/700

     (memory & OS).

3rd Generation (1963 - )    MicroSoft Disk Operating System (MS-DOS)-1981, 

     IBM introduced Personal Computer (PC) using Inegrated Circuit (IC) → Apple

     Introduced Macintosh  → Windows in 1990.
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A computer is a device that can be instructed to
carry out sequences of arithmetic or logical

set of operations automatically via computer
programming.

 Hardware
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What is a Computer? 
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Graphics CardRAMHDD

& other components, like motherboard, 

heat-sink, power supply, Fan etc.
      

      HDD (data-storage) is the secondary memory 

        while RAM (volatile memory) is the primary 

        memory. Graphics card is necessary for data-

        heavy applications.

CPU consists of Arithmetic Logic 
Unit (ALU), Memory, Input/Output
(I/O)

 Hardware



  

ALU, Memory, I/O
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 ALU performs 2 class of operations (arithmetic & logic), e.g. +, -, *, /, sin(), sqrt() 

 etc. Some machines can operate only on whole numbers (integers), while others 

 use floating point (real) numbers, but with limited precision. Also Boolean logic 

 operations (AND, OR, NOT, XOR) are performed in ALU.
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 ALU performs 2 class of operations (arithmetic & logic), e.g. +, -, *, /, sin(), sqrt() 

 etc. Some machines can operate only on whole numbers (integers), while others 

 use floating point (real) numbers, but with limited precision. Also Boolean logic 

 operations (AND, OR, NOT, XOR) are performed in ALU.

 Memory cell can store binary numbers in groups of 8 bits (or 1 byte). Each byte 

 represents 256 different numbers (            ):                                       CPU 

 contains memory cells (Registers) which are read/written more rapidly than RAM.

28=256 ℝ∈[0,255 ] ,[−128,127 ] .
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 ALU performs 2 class of operations (arithmetic & logic), e.g. +, -, *, /, sin(), sqrt() 

 etc. Some machines can operate only on whole numbers (integers), while others 

 use floating point (real) numbers, but with limited precision. Also Boolean logic 

 operations (AND, OR, NOT, XOR) are performed in ALU.

 Memory cell can store binary numbers in groups of 8 bits (or 1 byte). Each byte 

 represents 256 different numbers (            ):                                       CPU 

 contains memory cells (Registers) which are read/written more rapidly than RAM.

 I/O is the way a CPU exchanges information with the outside world, through 

 Peripherals e.g. keyboard, mouse etc (input devices) & display, printer etc (output

 devices). HDD, optical disk drives, computer networking serve as both input and

 output devices. 

28=256 ℝ∈[0,255 ] ,[−128,127 ] .



What is a Computer? 
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Computer Programs, libraries, Operating Systems (OS) etc. OS has many
Variant : (i) Unix distro (Solaris Sun OS), IRIX etc, 
            (ii) GNU/Linux [CentOS, Fedora (Redhat), SUSE, Ubuntu/Mint]

 Software
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Computer Programs, libraries, Operating Systems (OS) etc. OS has many
Variant : (i) Unix distro (Solaris Sun OS), IRIX etc, 
            (ii) GNU/Linux [CentOS, Fedora (Redhat), SUSE, Ubuntu/Mint]

Library : (i) Multimedia [DirectX, OpenGL, OpenAL, Vulkan (API)] 
             (ii) Programming Library (GSL, NRCP etc)

Data : (i) Protocol (TCP/IP, FTP, HTTP, SMTP etc), 
         (ii) File format (HTML, XML, JPEG, MPEG, PNG etc)

User Interface : GUI 

Application Software : Office-suite, Graphics, Audio, Games, Software 
                              Engineering (Compiler, Assembler, Interpreter,     
                              Debugger, Text editor etc).

 Software



What is a Computer? 

AKB

Programming Languages : (i) Low-level (e.g. Assembly language), 
                                  (ii) High-level (e.g. Basic, C/C++, Fortran 90/95
                                                                             Java, Pascal), 
                                  (iii) Scripting (Python, Ruby, Perl).

Mathematical Softwares : 
(i) Coding : LAPACK, LINPACK.

(ii) Coding/Visualization/Post-processing : Mathematica, Matlab/Octave,
                                                       Maple. 

(iii) Visualization : OpendX, Ovito, Paraview, VisIt, PyMol. 

(iv) Supercomputing : LAMMPS, BoxLib, PETSc, Sundials. 

 Software
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Scientific Computing

  Domain beyond analytical approach (due to non-linearity, integrability, non-

  inversion and many other reasons): Numerical Mathematics/Applied 

  Mathematics/Computational Science. Applications include, Computational 

  Finance, Computational Biology, Computational Engineering, Computational 

  Physics, Computational Chemistry, Computational Materials Science & so on.
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  quantitatively, and therefore can predict new phenomena by “numerical

  experiments” often hard to realize on a lab due to financial / timeframe / 

  workforce restrictions.
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Scientific Computing

  Domain beyond analytical approach (due to non-linearity, integrability, non-

  inversion and many other reasons): Numerical Mathematics/Applied 

  Mathematics/Computational Science. Applications include, Computational 

  Finance, Computational Biology, Computational Engineering, Computational 

  Physics, Computational Chemistry, Computational Materials Science & so on.

  A well-executed computation can reproduce lab-based experiments 

  quantitatively, and therefore can predict new phenomena by “numerical

  experiments” often hard to realize on a lab due to financial / timeframe / 

  workforce restrictions.

  There goes the catch! Given a computer, is every computation is a 

  well-executed computation? Answer is NO. 
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Binary and Decimal

 Decimal (or denary) numeral system represents integer and non-integer numbers 

 in base-10 positional number system. Decimal refers to digits 0, 1, 2, 3, 4, 5, 6, 7, 

 8, 9 in the decimal system containing a “decimal separator”, e.g. 3.14. In general, 

 
am am−1 ... a0 . b1 b2 ...bn = am10m+am−110m−1+ ...+a0 100+

b1

101
+

b2

102
+ ...+

bn

10n
.
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 Binary numeral system represents only two numbers 0 and 1 in base-2 number
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Binary and Decimal

 Decimal (or denary) numeral system represents integer and non-integer numbers 

 in base-10 positional number system. Decimal refers to digits 0, 1, 2, 3, 4, 5, 6, 7, 

 8, 9 in the decimal system containing a “decimal separator”, e.g. 3.14. In general, 

 

 Binary numeral system represents only two numbers 0 and 1 in base-2 number

 system. A human-understood decimal is converted to computer-understood 

 binary to perform computation and back converted to decimal to decipher. 

 Conversion binary    decimal:

 

 

am am−1 ... a0 . b1 b2 ...bn = am10m+am−110m−1+ ...+a0 100+
b1

101
+

b2

102
+ ...+

bn

10n
.

am am−1 ...a1 = am2m−1+am−1 2m−2+ ...+a1 20 .

Least Significant Bit (LSB)Most Significant Bit (MSB)

1011001012=1∗28+0∗27+1∗26+1∗25+0∗24+0∗23+1∗22+0∗21+1∗20=35710 .
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Binary and Decimal

 Conversion decimal    binary: Repeated division-by-2 method: 

 

 

29410 : divide by 2→147 {remainder 0(LSB) }, divide by 2→73 ( remainder 1) ,

divide by 2→36 (remainder 1) , divide by 2→18 ( remainder 0) ,

divide by 2→ 9 (remainder 0) , divide by 2→ 4 (remainder 1) ,

divide by 2→1 (remainder 0) ,divide by 2→2 (remainder 0) ,

divide by 2→0 {remainder 1(MSB)} 1001001102 .
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Binary and Decimal

 Conversion decimal    binary: Repeated division-by-2 method: 

 

 

 Fractions in binary terminate, if the denominator has 2 as the only prime factor. 

 1/10 doesn’t have a finite binary representation which causes 10×0.1 not to be 

 precisely equal to 1 in floating point arithmetic. To interpret the binary expression

 for                                                                                                   So 1 and 0’s

 alternate forever, if we want to reach the exact expression as a sum of inverse

 powers of 2     source of Error !! 

29410 : divide by 2→147 {remainder 0(LSB) }, divide by 2→73 ( remainder 1) ,

divide by 2→36 (remainder 1) , divide by 2→18 ( remainder 0) ,

divide by 2→ 9 (remainder 0) , divide by 2→ 4 (remainder 1) ,

divide by 2→1 (remainder 0) ,divide by 2→2 (remainder 0) ,

divide by 2→0 {remainder 1(MSB)} 1001001102 .

1
3
=.010101 ... means=0∗2−1

+1∗2−2
+0∗2−3

+1∗2−4
+...=0.3125+... .
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Scientific Computing

  The Patriot Missile Failure      On February 25, 1991, during the 

  Gulf War, an American Patriot Missile battery in Saudi Arabia failed to track & 

  intercept an incoming Iraqi Scud missile. It killed 28 soldiers & injured 100s of

  people. Cause of the failure turned out to be inaccurate calculation of the time

  due to arithmetic errors!! How????  
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Scientific Computing

  The Patriot Missile Failure      On February 25, 1991, during the 

  Gulf War, an American Patriot Missile battery in Saudi Arabia failed to track & 

  intercept an incoming Iraqi Scud missile. It killed 28 soldiers & injured 100s of

  people. Cause of the failure turned out to be inaccurate calculation of the time

  due to arithmetic errors!! How????  

  Time in tenths of second (measured by system's internal clock) was multiplied 

  by 0.1 to produce the time in seconds, using a 24-bit Register. Specifically,  

  value of 1/10 (having non-terminating binary expansion) was truncated at 

  24-bits. This small chopping error when multiplied by large number led to 

  significant error.

   

1
10

=
1

24 +
1

25+
1

28 +
1

29 +
1

212+
1

213 →binary expansion→

0.0001100110011001100110011001100
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Scientific Computing

  The Patriot Missile Failure      On February 25, 1991, during the 

  Gulf War, an American Patriot Missile battery in Saudi Arabia failed to track & 

  intercept an incoming Iraqi Scud missile. It killed 28 soldiers & injured 100s of

  people. Cause of the failure turned out to be inaccurate calculation of the time

  due to arithmetic errors!! How????  

  Time in tenths of second (measured by system's internal clock) was multiplied 

  by 0.1 to produce the time in seconds, using a 24-bit Register. Specifically,  

  value of 1/10 (having non-terminating binary expansion) was truncated at 

  24-bits. This small chopping error when multiplied by large number led to 

  significant error.

   What patriot saved in the system 

   error in binary 0.0000000000000000000000011001100 lead to 

   0.000000095 in decimal. Multiplying by the number of tenths of a second 

   in 100 hours gives 0.000000095×100×60×60×10=0.34 seconds.

    

1
10

=
1

24 +
1

25+
1

28 +
1

29 +
1

212+
1

213 →binary expansion→

0.0001100110011001100110011001100
0.00011001100110011001100



  

Floating Point Number System

 Significant Digits     These are the first nonzero digit & all succeeding digits, e.g. 

                                    1.7320 has 5 significant digits, while 0.0491 has only 3. 

 A floating point (real) number system have elements of the form                               , 

                                                                  is characterized with 4 integer parameters: 

 Base (or radix)    ,   precision    ,   exponent      &  significand (or mantissa)       

 Here                        &                       . This gives the range of nonzero floating point 

 numbers 

AKB

y = ±m x βe− t

β t e m .

emin≤e≤emax 0≤m≤β t−1

β
emin−1

≤ y≤β
emax(1−β

−t
) .



  

Floating Point Number System

 Significant Digits     These are the first nonzero digit & all succeeding digits, e.g. 
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 A floating point (real) number system have elements of the form                               , 
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 Floating point numbers aren’t equally spaced !! If                                                 then

 non-negative numbers are 
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y = ±m x βe− t

β t e m .

emin≤e≤emax 0≤m≤β t−1

β
emin−1

≤ y≤β
emax(1−β

−t
) .

β=2, t=3, emin=−1, emax=3

0, 0.25,0.3125, 0.3750,0.4375, 0.5, 0.625,0.750, 0.875,
1.0,1.25,1.50,1.75,2.0, 2.5,3.0,3.5, 4.0,5.0,6.0,7.0 .



  

Floating Point Number System

 Significant Digits     These are the first nonzero digit & all succeeding digits, e.g. 

                                    1.7320 has 5 significant digits, while 0.0491 has only 3. 

 A floating point (real) number system have elements of the form                               , 

                                                                  is characterized with 4 integer parameters: 

 Base (or radix)    ,   precision    ,   exponent      &  significand (or mantissa)       

 Here                        &                       . This gives the range of nonzero floating point 

 numbers 

 Floating point numbers aren’t equally spaced !! If                                                 then

 non-negative numbers are 

 

 Spacing of the floating point numbers jumps by a factor 2 at each power of 2. Spacing

 can be characterized in terms of machine epsilon, which is the distance from 1.0 to 

 the next larger floating point number. In Python, this can be seen as : 

 

“import numpy as np”, and then, “np.spacing(1)” yields 2.2204460492503131e-16.
AKB

y = ±m x βe− t

β t e m .

emin≤e≤emax 0≤m≤β t−1

β
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0, 0.25,0.3125, 0.3750,0.4375, 0.5, 0.625,0.750, 0.875,
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Floating Point Number System

 In MATLAB/Octave, “eps” gives the same value. “realmax” & “realmin” represent the

 largest positive & smallest positive normalized floating point number. In Python, 

 “import numpy as np”, and then, “np.finfo(np.double).max” yields 

 1.7976931348623157e+308, while “np.finfo(np.double).tiny” yields 

 2.2250738585072014e-308.
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Floating Point Number System

 In MATLAB/Octave, “eps” gives the same value. “realmax” & “realmin” represent the

 largest positive & smallest positive normalized floating point number. In Python, 

 “import numpy as np”, and then, “np.finfo(np.double).max” yields 

 1.7976931348623157e+308, while “np.finfo(np.double).tiny” yields 

 2.2250738585072014e-308.

 IEEE Arithmetic     IEEE standard defines a binary floating point system. The 

 standard specifies floating point number formats, results of the basic floating point

 operations & comparisons, rounding modes, floating point exceptions & handling, 

 conversion between different arithmetic formats. 

 Two main floating point formats are defined: 

Type Size Significand Exponent Unit roundoff     Range

Single

Double

32 bits

64 bits

23+1 bits

52+1 bits

8 bits

11 bits

2−24

≈5.96×10−8

2−53

≈1.11×10−16

10±38

10±308

AKB
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Floating Point Number System

 In both formats one bit is reserved as a sign bit. The most significant bit is always 

 1 & not stored. This hidden bit accounts for the "+1" in the table.



  

AKB

Floating Point Number System

 In both formats one bit is reserved as a sign bit. The most significant bit is always 

 1 & not stored. This hidden bit accounts for the "+1" in the table.

 NaN (Not a number) is a special bit pattern with arbitrary significand. It’s generated

 by operations such as                                                   Infinity symbol is represented

 by zero significand & same exponent field as NaN, sign bit distinguishes between  

        with property,                                                                 Zero is represented by a 

 zero exponent field & zero significand, with                

 In MATLAB/Fortran 90/95, A(p:q, r:s) denotes submatrix of A formed of rows p to q 

 & columns r to s. A(:, j) is the jth column of A, and A(i, :) the ith row of A. 

0 /0,0×∞ ,∞/∞ ,(+∞)+(−∞).

±∞ ∞+∞=∞ ,(−1)×∞=−∞ , finite /∞=0 .

+0=−0 .
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Floating Point Number System

 In both formats one bit is reserved as a sign bit. The most significant bit is always 

 1 & not stored. This hidden bit accounts for the "+1" in the table.

 NaN (Not a number) is a special bit pattern with arbitrary significand. It’s generated

 by operations such as                                                   Infinity symbol is represented

 by zero significand & same exponent field as NaN, sign bit distinguishes between  

        with property,                                                                 Zero is represented by a 

 zero exponent field & zero significand, with                

 In MATLAB/Fortran 90/95, A(p:q, r:s) denotes submatrix of A formed of rows p to q 

 & columns r to s. A(:, j) is the jth column of A, and A(i, :) the ith row of A. 

 Evaluation of an expression in floating point arithmetic denoted by         is 

 u is called the unit roundoff (machine precision) 

 Computed quantities are denoted with hat. So,    is the computed approximation 

                                                                      of x.

0 /0,0×∞ ,∞/∞ ,(+∞)+(−∞).

±∞ ∞+∞=∞ ,(−1)×∞=−∞ , finite /∞=0 .

+0=−0 .

fl(.)

fl(x op y )=( xop y )(1+δ) , |δ|≤u

≈10−8(single),10−16(double),

10−10−10−12(pocket calculators).

x̂
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Floating Point Number System

        (floor x) is the largest integer        &       (ceil x) is the smallest integer        

 Check with Python: “import math; math.floor(1.9) = 1.0”, “math.ceil(1.9)=2.0”. 

 Remember, we compute single precision arithmetic (                   ) by rounding, say, 

 a double precision result with unit roundof (                       ) to single precision as

 well rounding result of every elementary operation to single precision.

 

  

 

⌊x ⌋ ≤x ⌈x ⌉ ≥x .

u≈6×10−8

u≈1.1×10−16
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Floating Point Number System

        (floor x) is the largest integer        &       (ceil x) is the smallest integer        

 Check with Python: “import math; math.floor(1.9) = 1.0”, “math.ceil(1.9)=2.0”. 

 Remember, we compute single precision arithmetic (                   ) by rounding, say, 

 a double precision result with unit roundof (                       ) to single precision as

 well rounding result of every elementary operation to single precision.

 Absolute & Relative Error   If    is an approximation to real number   , then

   

  

 Note that relative error is scale independent:                        

 Relative error is connected with the notion of Correct significant digits, however 

 relative error is a more precise, base independent measure. 

 Sources of Error        (i) rounding, (ii) data uncertainty & (iii) truncation. Uncertainty 

 in data can arise in several ways     from errors of measurement, storing data on

 

 

⌊x ⌋ ≤x ⌈x ⌉ ≥x .

u≈6×10−8

u≈1.1×10−16

x̂ x

Eabs( x̂)=|x−x̂|, Erel ( x̂)=
|x− x̂|
|x|

x→α x , x̂→α x̂ ,doesn't change Erel( x̂).
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Sources of Error

computer. Data errors can be analysed using perturbation theory, while 

intermediate rounding errors require an analysis specific to the given method & 

thus harder to understand.
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Sources of Error

computer. Data errors can be analysed using perturbation theory, while 

intermediate rounding errors require an analysis specific to the given method & 

thus harder to understand.

 Truncation/discretization errors is when in Taylor’s series to derive numerical 

methods, such as Trapezium rule for Quadrature, Euler’s method for differential 

equations etc, finite terms are kept and later are omitted. This depends on choice 

of “h”: 

 “Rounding errors and instability are important & numerical analysts will 

  always be the experts in these subjects & at pains to ensure that the 

  unwary are not tripped up by them. But our central mission is to 

  compute quantities that are typically uncomputable, from an analytic 

  point of view, and to do it with lightning speed”.  

                                                                 – Nick Trefethen, FRS, Univ. of Oxford.

 

f (x+h)=f (x )+h f ' ( x)+
h2

2 !
f ' ' (x )+

h3

3 !
f ' ' ' (x )+O(h4)
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Precision vs Accuracy    
  
                                       Accuracy refers to the absolute/relative error of an 

approximate quantity. Precision is the accuracy with which the basic arithmetic

operations (+, -, *, /) are performed & for floating point arithmetic is measured by 

the unit roundof u. Accuracy & precision are the same for the scalar computation 

c = a x b, but accuracy can be much worse than precision in the solution of a 

linear system of equations, e.g. stiff equations.
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Precision vs Accuracy    
  
                                       Accuracy refers to the absolute/relative error of an 

approximate quantity. Precision is the accuracy with which the basic arithmetic

operations (+, -, *, /) are performed & for floating point arithmetic is measured by 

the unit roundof u. Accuracy & precision are the same for the scalar computation 

c = a x b, but accuracy can be much worse than precision in the solution of a 

linear system of equations, e.g. stif equations.

Forward and Backward Errors   Suppose that an approximation   of             

is computed in an arithmetic of precision    with               . This doesn’t mean we

know for any       ,                       The absolute and relative errors of     are called 

forward errors and               and               is called the backward error. Stability of

numerical recipe lies on backward           stable algorithm where rounding errors

are most significant. Recipe for cosine functions do not satisfy                      but 

                                                                , are called mixed forward-backward

error result.

ŷ y=f (x )

u Erel( ŷ )≈u

△ x ŷ=f (x+△ x ). ŷ

min|△ x| min|△ x|
|x|

ŷ=f (x+△ x )

ŷ+△ y=f (x+△ x ), △ y≤ϵ|y|, △ x≤η|x|
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Conditioning                             Forward & Backward error is governed by sensitivity of 

solution to perturbations in the data or “conditioning” of the problem. Then, 

or                                                        Here                       measures the relative

change in output for relative change in input or condition number of f. For 

example, consider                                                                     So a small relative

change in x can produce large relative change in log x for x~1. 

ŷ− y=f (x+△ x )−f ( x)=f ' (x )△ x+
(△ x)2

2
f ' ' ( x+△ x )+O((△ x)3),

ŷ− y
y

=(
xf ' (x)
f (x )

)
△ x
x

+O((△ x )2). c (x)=|xf ' ( x)f (x ) |

f (x )=log x , c (x )=|1/ log x| → ∞ for x≈1 .
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Conditioning                             Forward & Backward error is governed by sensitivity of 

solution to perturbations in the data or “conditioning” of the problem. Then, 

or                                                        Here                       measures the relative

change in output for relative change in input or condition number of f. For 

example, consider                                                                     So a small relative

change in x can produce large relative change in log x for x~1. 

Rule of thumb:                                                                            So, computed

solution to an ill-conditioned problem can have a large forward error, even if 

computed solution has small backward error. Backward stability implies forward

stability. Cramer’s rule for solving 2x2 linear system is forward stable but not 

backward stable.

ŷ− y=f (x+△ x )−f ( x)=f ' (x )△ x+
(△ x)2

2
f ' ' ( x+△ x )+O((△ x)3),

ŷ− y
y

=(
xf ' (x)
f (x )

)
△ x
x

+O((△ x )2). c (x)=|xf ' ( x)f (x ) |

f (x )=log x , c (x )=|1/ log x| → ∞ for x≈1 .

forward error≤condition number×backward error .
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Cancellation                            Consider the function                           which for all         is 

                    . However, say, for                                                     rounded to 10

significant digits, so as                                      and then, 

= 0.6944…, which is wrong !! 

f (x )=
(1−cos x)

x2
x≠0

0≤f (x )<1/2 x=1.2×10−5 ,cos x=0.9999999999

1−cos x=0.0000 0000 01 (1−cos x )

x2
=

10−10

1.44×10−10
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Cancellation                            Consider the function                           which for all         is 

                    . However, say, for                                                     rounded to 10

significant digits, so as                                      and then, 

= 0.6944…, which is wrong !! 

The problem lies in the fact that, even though 1-c is exact, it has only 1 

significant figure, so subtraction produces a result of the same size as the error in

c. However, if the subtraction is avoided by rewriting 

                              . The same procedure now yields f(x) = 0.5 correct to 10

                                significant digits. 

f (x )=
(1−cos x)

x2
x≠0

0≤f (x )<1/2 x=1.2×10−5 ,cos x=0.9999999999

1−cos x=0.0000 0000 01 (1−cos x )

x2
=

10−10

1.44×10−10

cos x=1−2sin2(x /2) ,

f (x)=
1
2
(

sin(x /2)
x /2

)
2
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Cancellation                            Consider the function                           which for all         is 

                    . However, say, for                                                     rounded to 10

significant digits, so as                                      and then, 

= 0.6944…, which is wrong !! 

The problem lies in the fact that, even though 1-c is exact, it has only 1 

significant figure, so subtraction produces a result of the same size as the error in

c. However, if the subtraction is avoided by rewriting 

                              . The same procedure now yields f(x) = 0.5 correct to 10

                                significant digits. 

 Error in cancellation can be avoided by estimating the damage, it can’t be 

 unavoidable. Or computing ratio of differences of the same order of error so that

 numerator & denominator cancels out. Or, for example computing x + (y – z) for 

f (x )=
(1−cos x)

x2
x≠0

0≤f (x )<1/2 x=1.2×10−5 ,cos x=0.9999999999

1−cos x=0.0000 0000 01 (1−cos x )

x2
=

10−10

1.44×10−10

cos x=1−2sin2(x /2) ,

f (x)=
1
2
(

sin(x /2)
x /2

)
2

x≫ y≈z>0 .
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Roots of a Quadratic Equation   Depending on the sign of the remainder 

                                               have two roots (real-unequal, real-equal, 

imaginary)                             . If                then                 and for “+” sign it 

suffers massive cancellation that brings prominence of earlier rounding errors. To

avoid, the largest (in absolute value) root is chosen                              and the 

other from                But when               accuracy is lost &           only way to 

guarantee accuracy is to use extended precision. 

b2−4ac , for a≠0,ax2+bx+c=0

x=
−b±√b2−4 ac

2a
b2≫4 ac , x=

−b±b
2a

x1=
−b−√b2−4ac

2ax1 x2=
c
a
. b2≈4 ac ,
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Roots of a Quadratic Equation   Depending on the sign of the remainder 

                                               have two roots (real-unequal, real-equal, 

imaginary)                             . If                then                 and for “+” sign it 

suffers massive cancellation that brings prominence of earlier rounding errors. To

avoid, the largest (in absolute value) root is chosen                              and the 

other from                But when               accuracy is lost &           only way to 

guarantee accuracy is to use extended precision. 

Overflow & Underflow    If we apply                             in single precision 

arithmetic to equation                                            , even when the roots are not

harmful (x=1 & x=2), overflow occurs since the maximum floating point number is

         . 

b2−4ac , for a≠0,ax2+bx+c=0

x=
−b±√b2−4 ac

2a
b2≫4 ac , x=

−b±b
2a

x1=
−b−√b2−4ac

2ax1 x2=
c
a
. b2≈4 ac ,

x=
−b±√b2−4ac

2a
1020 x2−3×1020 x+2×1020=0

≈1038
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Roots of a Quadratic Equation   Depending on the sign of the remainder 

                                               have two roots (real-unequal, real-equal, 

imaginary)                             . If                then                 and for “+” sign it 

suffers massive cancellation that brings prominence of earlier rounding errors. To

avoid, the largest (in absolute value) root is chosen                              and the 

other from                But when               accuracy is lost &           only way to 

guarantee accuracy is to use extended precision. 

Overflow & Underflow    If we apply                             in single precision 

arithmetic to equation                                            , even when the roots are not

harmful (x=1 & x=2), overflow occurs since the maximum floating point number is

         . Analytically/numerically dividing by maximum (|a|, |b|, |c|) =            is OK, 

but same strategy doesn’t work for, say,                                     whose roots are

                      

b2−4ac , for a≠0,ax2+bx+c=0

x=
−b±√b2−4 ac

2a
b2≫4 ac , x=

−b±b
2a

x1=
−b−√b2−4ac

2ax1 x2=
c
a
. b2≈4 ac ,

x=
−b±√b2−4ac

2a
1020 x2−3×1020 x+2×1020=0

≈1038 3×1020

10−20 x2−3 x+2×1020=0

1020 & 2×1020 .
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Roots of a Quadratic Equation   Depending on the sign of the remainder 

                                               have two roots (real-unequal, real-equal, 

imaginary)                             . If                then                 and for “+” sign it 

suffers massive cancellation that brings prominence of earlier rounding errors. To

avoid, the largest (in absolute value) root is chosen                              and the 

other from                But when               accuracy is lost &           only way to 

guarantee accuracy is to use extended precision. 

Overflow & Underflow    If we apply                             in single precision 

arithmetic to equation                                            , even when the roots are not

harmful (x=1 & x=2), overflow occurs since the maximum floating point number is

         . Analytically/numerically dividing by maximum (|a|, |b|, |c|) =            is OK, 

but same strategy doesn’t work for, say,                                     whose roots are

                      Scaling the variable               yields,  

which is the initial equation we started from.

b2−4ac , for a≠0,ax2+bx+c=0

x=
−b±√b2−4 ac

2a
b2≫4 ac , x=

−b±b
2a

x1=
−b−√b2−4ac

2ax1 x2=
c
a
. b2≈4 ac ,

x=
−b±√b2−4ac

2a
1020 x2−3×1020 x+2×1020=0

≈1038 3×1020

10−20 x2−3 x+2×1020=0

1020 & 2×1020 . x=1020 y 1020 y2−3×1020 y+2×1020=0
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A well-known example in Condensed Matter Physics is the           , that gives a 

tanh solution of the domain wall formed between liquid-gas interface/magnetic

domain walls having diverse consequences in many branches of physics.

 

Need for non-dimensionalization

ϕ4 kink

ℱ =−
1
2
rϕ2

+uϕ4
+

1
2
c (∇ ϕ)

2

ϕ=±ϕ0 tanh [
x−x0

√2 c /r
] ϕ=density (say)
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A well-known example in Condensed Matter Physics is the           , that gives a 

tanh solution of the domain wall formed between liquid-gas interface/magnetic

domain walls having diverse consequences in many branches of physics.

 

 To have a control over the dynamics of density variation, clearly one needs to 

 control these parameters, r, u, c or a multi-dimensional diagram which is nearly

 impossible to control often because of many parameters with less-known activity.

Need for non-dimensionalization

ϕ4 kink

ℱ =−
1
2
rϕ2

+uϕ4
+

1
2
c (∇ ϕ)

2

ϕ=±ϕ0 tanh [
x−x0

√2 c /r
] ϕ=density (say)
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 Notice that                            have two minima, that we see from   

                                    

Need for non-dimensionalization

ℱ =−
1
2
rϕ2

+uϕ4

∂ℱ
∂ϕ

=0=−rϕ+4uϕ3 or ϕ=±ϕ0=√ r
4 u

.Then ℱ 0=−
1
2
rϕ2

+uϕ4
=−

r2

16u
=−

r ϕ0
2

4
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 Notice that                            have two minima, that we see from   

                                    

 But now notice that, 

Need for non-dimensionalization:

ℱ =−
1
2
rϕ2

+uϕ4

∂ℱ
∂ϕ

=0=−rϕ+4uϕ3 or ϕ=±ϕ0=√ r
4 u

.Then ℱ 0=−
1
2
rϕ2

+uϕ4
=−

r2

16u
=−

r ϕ0
2

4

ℱ =−
1
2
rϕ2

+uϕ4
=−

1
2
r
ϕ2

ϕ0
2
ϕ0

2
+u

ϕ4

ϕ0
4
ϕ0

4
=−

r2

8u
ϕ̂

2
+

r2

16u
ϕ̂

4

=−
r2

8u
ϕ̂2+

r2

16u
ϕ̂4=−

r2

16u
(2 ϕ̂2−ϕ̂4)=ℱ 0(2 ϕ̂

2−ϕ̂4)
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 Notice that                            have two minima, that we see from   

                                    

 But now notice that, 

 Therefore,                                                              . The dynamics is completely

 free of parameter. According to the scale, we can choose what to compute !! 

 Beautiful Example : Kibble mechanism in Cosmology → LCD screen defect 

                               applications. Both are governed by the same equation !! 

Need for non-dimensionalization:

ℱ =−
1
2
rϕ2

+uϕ4

∂ℱ
∂ϕ

=0=−rϕ+4uϕ3 or ϕ=±ϕ0=√ r
4 u

.Then ℱ 0=−
1
2
rϕ2

+uϕ4
=−

r2

16u
=−

r ϕ0
2

4

ℱ =−
1
2
rϕ2

+uϕ4
=−

1
2
r
ϕ2

ϕ0
2
ϕ0

2
+u

ϕ4

ϕ0
4
ϕ0

4
=−

r2

8u
ϕ̂

2
+

r2

16u
ϕ̂

4

=−
r2

8u
ϕ̂2+

r2

16u
ϕ̂4=−

r2

16u
(2 ϕ̂2−ϕ̂4)=ℱ 0(2 ϕ̂

2−ϕ̂4)

ℱ

ℱ 0

=ℱ̂ =2 ϕ̂2
−ϕ̂

4 & so, ∂t ϕ̂=4(ϕ̂−ϕ̂
3
)
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Suppose we have a set of linear equations A*x = b, where                               and

                                          , A is a nonsingular matrix. Of interest are tridiagonal,

                                           symmetric positive (semi)-definite (SPD), triangular

                                           etc matrix. 

Solving Linear Systems
x=(x1 , x2 , x3 , ... , xn)

T

a11 a12 a13 ... a1n

a11 a12 a13 ... a1n

a11 a12 a13 ... a1n

a11 a12 a13 ... a1n

A=
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Suppose we have a set of linear equations A*x = b, where                               and

                                          , A is a nonsingular matrix. Of interest are tridiagonal,

                                           symmetric positive (semi)-definite (SPD), triangular

                                           etc matrix. A square matrix is lower (upper) triangular

                                           if all elements above main diagonal are zero. So, 

Solving Linear Systems
x=(x1 , x2 , x3 , ... , xn)

T

a11 a12 a13 ... a1n

a11 a12 a13 ... a1n

a11 a12 a13 ... a1n

a11 a12 a13 ... a1n

A=

1 2 3
2 16 21
4 28 73

= x
1 2 3
0 4 5 2 3 0

1 0 0

0 0 6 4 5 6

L U
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Suppose we have a set of linear equations A*x = b, where                               and

                                          , A is a nonsingular matrix. Of interest are tridiagonal,

                                           symmetric positive (semi)-definite (SPD), triangular

                                           etc matrix. A square matrix is lower (upper) triangular

                                           if all elements above main diagonal are zero. So, 

 Standard method to solve a linear (tridiagonal) system is to use “Gaussian 
 Elimination”, meaning, first stage of eliminating all component of A below the 

 main diagonal (or reducing tridiagonal A to row-triangular form) and second stage

 of backward solution (backsolve). 

Solving Linear Systems
x=(x1 , x2 , x3 , ... , xn)

T

a11 a12 a13 ... a1n

a11 a12 a13 ... a1n

a11 a12 a13 ... a1n

a11 a12 a13 ... a1n

A=

1 2 3
2 16 21
4 28 73

= x
1 2 3
0 4 5 2 3 0

1 0 0

0 0 6 4 5 6

L U
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 So, in tridiagonal system                                        , where 

                                                   

                                                  . Now we transform from tridiag to U matrix, as,

                                                     

 Gaussian Elimination

Ax=b ; A=tridiag (li ,d i , ui)

d1 u1 0 ... 0 b1

l2 d2 u2 ... 0 b2

0 l3 d3 ... 0

0 ... 0 ln dn bn

[A∣b]=

li=ai , i−1 , d i=ai , i ,
ui=ai , i+1

un−1 bn−1

d1 x1+u1 x2=b1, or x1=(b1−u1 x2) / d1

l2 x1+d2 x2+u2 x3=b2, or(d2−u1 l2/ d1) x2+u2 x3

=b2−b1 l2 / d1
... , ... , ... , ... , ...

... , ... , ... , ... , ...
... , ... , ... , ... , ...
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 So, in tridiagonal system                                        , where 

                                                   

                                                  . Now we transform from tridiag to U matrix, as,

                                                     

So, 

 Gaussian Elimination

Ax=b ; A=tridiag (li ,d i , ui)

d1 u1 0 ... 0 b1

l2 d2 u2 ... 0 b2

0 l3 d3 ... 0

0 ... 0 ln dn bn

[A∣b]=

li=ai , i−1 , d i=ai , i ,
ui=ai , i+1

un−1 bn−1

d1 x1+u1 x2=b1, or x1=(b1−u1 x2) / d1

l2 x1+d2 x2+u2 x3=b2, or(d2−u1 l2/ d1) x2+u2 x3

=b2−b1 l2 / d1
... , ... , ... , ... , ...

... , ... , ... , ... , ...
... , ... , ... , ... , ...

[A∣b] ~

d1 u1 0 ... 0 b1

0 d2−u1(l2/d1) u2 ... 0 b2−b1(l2/d1)

0 l3 d3 ... 0

un−1 bn−1

0 ... 0 ln dn bn

d1≠0
d2−u2( l2 / d1)≠0

Row Equivalent
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 So, in tridiagonal system                                        , where 

                                                   

                                                  . Now we transform from tridiag to U matrix, as,

                                                     

So, 

So general form is                                                                                      and by

reducing the last equation, we get,                                                         , so

 Gaussian Elimination

Ax=b ; A=tridiag (li ,d i , ui)

d1 u1 0 ... 0 b1

l2 d2 u2 ... 0 b2

0 l3 d3 ... 0

0 ... 0 ln dn bn

[A∣b]=

li=ai , i−1 , d i=ai , i ,
ui=ai , i+1

un−1 bn−1

d1 x1+u1 x2=b1, or x1=(b1−u1 x2) / d1

l2 x1+d2 x2+u2 x3=b2, or(d2−u1 l2/ d1) x2+u2 x3

=b2−b1 l2 / d1
... , ... , ... , ... , ...

... , ... , ... , ... , ...
... , ... , ... , ... , ...

[A∣b] ~

d1 u1 0 ... 0 b1

0 d2−u1(l2/d1) u2 ... 0 b2−b1(l2/d1)

0 l3 d3 ... 0

un−1 bn−1

0 ... 0 ln dn bn

d1≠0
d2−u2( l2 / d1)≠0

Diagonalk=dk−uk−1(lk /dk−1); Vectork=bk−bk−1(lk /dk−1)Diagonalk=d k−uk−1(lk /dk−1); Vectork=bk−bk−1(lk /dk−1)

dn−un−1(ln /dn−1) xn=bn−bn−1(ln/dn−1)

Row Equivalent



AKB

we can easily solve the last equation to find     and using this value to find        and

so on (backward). 

                                    

xn xn−1
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we can easily solve the last equation to find     and using this value to find        and

so on (backward). 

                                    

 For an ill-conditioned matrix, 

 Gaussian elimination is adversely 

 affected by rounding error. This lead 

 to iterative refinement/improvement 

 of the algorithm.

xn xn−1



 For a large sparse matrix, Gaussian elimination is bad because L & U is dense!!

                                                                  

 In MATLAB/Octave,            checks sparsity. 

 

spy (A)



 For a large sparse matrix, Gaussian elimination is bad because L & U is dense!!

                                                                  

 In MATLAB/Octave,            checks sparsity. 

 Iterative (Inexact/approximate) Methods      

 Splitting methods, method of conjugate gradients, Jacobi iteration, Gauss-Seidel

 iteration and so on ….

 For a linear system          , we split               , such that linear system of form 

              is easy to solve, or                  is easy to compute.

spy (A)

Ax=b A=M−N

Mx '=b ' x '=M−1b '



 It follows,                                                                                       . So, given an

 initial guess    , iteration is to compute the

 sequence of vectors                                  

Ax=b ,or(M−N ) x=b ,or Mx=Nx+b ,or x=M−1Nx+M−1b

iteration matrixT

xk+1=M−1 Nxk+M−1b .

x0



 It follows,                                                                                       . So, given an

 initial guess    , iteration is to compute the

 sequence of vectors                                  

 Note,                                                                          so the method works best

 when                             . This is the backbone of Iterative methods.

 

Ax=b ,or(M−N ) x=b ,or Mx=Nx+b ,or x=M−1Nx+M−1b

iteration matrixT

xk+1=M−1 Nxk+M−1b .

x0

T=M−1 N=M−1(M−A )=I−M−1 A≤ I (always)

M−1≈A−1 or M=A



 It follows,                                                                                       . So, given an

 initial guess    , iteration is to compute the

 sequence of vectors                                  

 Note,                                                                          so the method works best

 when                             . This is the backbone of Iterative methods.

                             Its called “diagonal inversion” as it involves inversion of diag(A)

 with A = D -  (D – A), so that iteration becomes                                         

 

Ax=b ,or(M−N ) x=b ,or Mx=Nx+b ,or x=M−1Nx+M−1b

iteration matrixT

xk+1=M−1 Nxk+M−1b .

x0

T=M−1 N=M−1(M−A )=I−M−1 A≤ I (always)

M−1≈A−1 or M=A

Jacobi Iteration
xk+1=( I−D−1 A ) xk+D−1b ,

=xk−D−1 Axk+D−1b .



 It follows,                                                                                       . So, given an

 initial guess    , iteration is to compute the

 sequence of vectors                                  

 Note,                                                                          so the method works best

 when                             . This is the backbone of Iterative methods.

                             Its called “diagonal inversion” as it involves inversion of diag(A)

 with A = D -  (D – A), so that iteration becomes                                         

 Example:                                          has exact solution,                      If we start

                                                         from 1st Jacobi iteration for                    with

                                                         D = diag(4,5,6,4), then in 19 iterations, 

                                                                                            

Ax=b ,or(M−N ) x=b ,or Mx=Nx+b ,or x=M−1Nx+M−1b

iteration matrixT

xk+1=M−1 Nxk+M−1b .

x0

T=M−1 N=M−1(M−A )=I−M−1 A≤ I (always)

M−1≈A−1 or M=A

Jacobi Iteration
xk+1=( I−D−1 A ) xk+D−1b ,

=xk−D−1 Axk+D−1b .
4 1 0 0 x1
1 5 1 0 x2
0 1 6 1 x3
1 0 1 4 x4

=
1
7
16
14

x=(0,1,2,3)T .

x=(0,0,0,0)T

x1=x0−D−1 Ax0+D−1b=(0.2500,1.4000,2 .6667,3.5000)T

x2=x1−D−1 Ax1+D−1b=(−0.1000,0 .8167,1 .8500,2.7708)T

x3=x2−D−1 Ax2+D−1b=(0.0458,1 .0500,2 .0688,3 .0625)T

xk+1−xk<10−6 .



Gauss-Seidel Iteration                                       An obvious extension of Jacobi iteration is to invert the

 entire lower triangular part of A by A = L – (L – A) so that iteration becomes            
    

                                                           . Here we do not compute L inverse but 

                                                             solve the linear system Lz = Ax (easy). 

 Gauss-Seidel converges faster (11 iterations) than Jacobi, as more of the matrix is

 inverted at each step, especially for SPD matrices. 

xk+1=( I−L−1 A) xk+L−1b=xk−L−1 Axk+L−1b .

4 1 0 0
1 5 1 0
0 1 6 1
1 0 1 4

A= L=

4 0 0 0
1 5 0 0

1 0 1 4
0 1 6 0

x1=(0.2500,1 .3500,2.4417,2 .8271)T ,

x3=(0.0177,0 .9883,2 .0000,2 .9956)T .

x2=(−0.0875,0 .9292,2.0406,3 .0117)T ,



  

 Introduction to programming in python      Introduction to programming, constants, variables and data 

 types, dynamical typing, operators and expressions, modules, I/O statements, file handling, iterables, 

 compound statements, indentation in python, the if-elif-else block, for and while loops, nested compound

 statements.

 Programs      (a) Elementary calculations with different type of data e.g., area & volume of regular shapes

 using formula. Creation and handling one dimensional array. Sum and average of a list of numbers stored

 in array, finding the largest and lowest number from a list, swapping two data in a list, sorting of numbers

 in an array using bubble sort, insertion sort method. Calculation of term value in a series and finding the 

 other terms with a seed (value of particular term) and calculation of different quantities with series. 

 Convergence & accuracy of series. Introduction of three dimensional array. Simple calculations of matrices

 e.g., addition, subtraction, multiplication.

 (b) Curve fitting, Least square fit, Goodness of fit, standard deviation,

      i. Ohms law to calculate R,

     ii. Hooke's law to calculate spring constant AKB

Syllabus
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Introduction to Programming in Python

 Python is a scripting language, one of the most handy, easy-to-implement & open-

source languages available. Unlike Fortran 77, 90/95 or C (high level), it directly 

interacts with the interpreter on every sentence executed  on the command prompt 

(>>) [Python REPL-interpreter]. We’ll however learn to write standard programs (py-

scripts) in a file (suitably_choiced_name.py) & then execute it without compilation.

 

 Name REPL (Read-Evaluate-Print-Loops) is because it (a) reads what a user types, 

 (b) evaluates what it reads, (c) prints out the return value after evaluation, and (d) 

 loops back and does it all over again.

 Object oriented programming: deals with computable data as an object on which

 different methods act to produce a desired result. Its nature is defined as its properties.

 These properties can be probed by functions, which are called methods.
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Introduction to Programming in Python

                Field of Study                                                      Python Module

 Scientific Computation                                         numpy, scipy, sympy

 Plotting/Visualization                                            matplotlib

 Image Processing                                                scikit-image

 Graphic User Interface (GUI)                               pyQT 

 Statistics                                                               pandas

 Game Development                                             PyGame

 Networking                                                           networkx

 Cryptography                                                       pyOpenSSL

 Database                                                             SQLAlchemy

 Language Processing                                          nltk

 Testing                                                                  nose

 HTML/XML parsing                                              BeautifulSoup

 Machine Learning                                                scikit-learn, tensorflow                
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Introduction to Programming in Python

 Create a directory of your Group. This is where throughout the course your python 

 scripts (codes) will be stored. 

 Open IDLE editor & create a new file, say, hello.py. 

 Within it, write:     print(‘Hello World’)     Save & Run the code and welcome yourself !! 

 Getting out of terminal : exit() or Ctrl + D.

 print ('Hello World') 

 print 'I am a first year UG student' 

 print "I'm new to Python Programming" 

 print 'It is my first' + '  ' + 'Python code'

 ...code fragment...   # Single line comments are commented out 

 """

 Multiple line comment can be 

 commented out like this.

 """
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Introduction to Programming in Python

Syntax, Variables, Numbers, Operators:

Variables     Name of a variable (or any identifier such as class, function, module or 

 other object) can be anything combined with alphabets, letters & some symbols in the

 keyboard (except @, $, % etc.), beginning with a letter (the upper case or lower case

 letters from A to Z). But the names cannot be the words given in the following table.

 Those are Python keywords (in lower case letters) reserved for the use by system. 

 Also, names are case sensitive. Suppose, we define a variable as ‘ABC’ and later 

 we call as ‘Abc’, then it will not work. 

Reserved words     Using the module keyword, you can obtain the list of keywords.

                 import keyword; print ("Python keywords:", keyword.kwlist)

'Python keywords:', ['and', 'as', 'assert', 'break', 'class', 'continue', 'def', 'del', 'elif', 'else',

'except', 'exec', 'finally', 'for', 'from', 'global', 'if', 'import', 'in', 'is', 'lambda', 'not', 'or', 'pass',

'print', 'raise', 'return', 'try', 'while', 'with', 'yield']



AKB

Introduction to Programming in Python

Syntax, Variables, Numbers, Operators 

 Operators:                     For a=10, b=2,  Addition: a+b = 12, Substraction: a–b = 8, 

   =        v = a + b            Multiplication: a*b = 20, Division: a/b = 5, Modulus [Remainder, 

 +=        v = v + b            when a is divided by b] a%b = 0, Power or exponent 

 -=         v = v – b            a**b = 100, Rounding off, e.g. if a=100, b=3, 100/3= 33 also 

  /=        v = v / a             100//3=33 but 100.0/3=33.3333.....whereas 100.0//3 = 33.0

 //=        v = v // a     (roundoff)                          I/O (Input/Output) Statements  

 *=         v = v * a                                               a=input()  # Wait for the input value of ‘a’.

 **=        v = v ** a   (to the power)                    a=input(“Enter a: \n”)

 %=        v = v % a  (remainder)                        a, b, c = input()  # For many inputs.

 Multiple assignments within same statement:  >> a =  b = c = 10

 Order of usage: PEMDAS (Parenthesis → Exponents → Multiplication → Division     

                                              → Addition → Substracton. 
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Comparison Operators:

       Operator Symbol                   Operator Meaning                       Example

                  ==                                       equal to                   1==1 is True, 1==2 is False

                  !=                                    not equal to                 1!=1 is False, 1!=2 is True

                  <>                                   not equal to                 1<>1 is False, 1<>2 is True

                  <                                        less than                   1<2 is True, 2<1 is False

                    >                                   greater than                 1>2 is False, 2>1 is True

                  <=                                less than equal to           1<=1 is True, 1<=2 is True

                  >=                            greater than equal to          1>=1 is True, 1>=2 is False

>> not True                                   >> 1>=2 == 2>=1                 >> False > True

 False                                             False                                    False

 >> a = True; b = False; a and b  >> 2>=1 == 1<=2                >> True > False

 False                                             True                                     True

 >> a or b : True
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 Array & List                                      A list data type stores a sequence of values. All elements of list can be     

accessed by their index, but individual list elements can belong to any data type. Array

on the other hand stores only numeric value & is not built in python interpreter     need

module “numpy” (Semester-3).

We can make a list of numbers or names or anything mixed, in the following way: 

>>> X = [3, 2, 4, 1, 5, 0]                                        # List of numbers

>>> Y = [“AKB”, “MC”, “SSB”, “PD”, “AD”]    # List of names

>>> Z = [“Good”, 10, “Bad”, 50]                        # Mixed list

Display List       >>> list(X)                     >>> list(Y)

                           [3, 2, 4, 1, 5, 0]               “AKB”, “MC”, “SSB”, “PD”, “AD”

 To view, on the command prompt, >>>X Or >>>print X both works. 

 Note, if we write >>>list(), we get back an empty list []. Also, while writing, the amount 

 of gap between ‘list’ and the parenthesis () does not matter. You may write >>>list() 

 & get back the same response.
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 >>> X+Y       # sum of two lists (ans: [2,3,4,1,5,0,’AKB’,’MC’,’SSB’,’PD’,’AD’])

 >>> X*3        # repeat 3 times (ans: [2,3,4,1,5,0,2,3,4,1,5,0,2,3,4,1,5,0])

 >>> len(X)    # length of list (ans: 6);        >>> sum(X)    # adding all element (ans: 15)  

 >>> max(X)  # maximum of X (ans: 5),     >>> min(X)    # minimum of X (ans: 0)

 >>> X.index(max(X))      # Location of the maximum in list ‘X’ (ans: 4)

 >>> X.index(3)                # Location of ‘3’ in the list ‘X’ (ans: 1)

 Positions are counted from left (like C programming): 0, 1, 2, 3,… 

 Numbers 

 int : Integers with +ive or -ive sign : Examples: 1245, -234 etc

 long : Long Integers of unlimited size. Examples: 1245L

 float : Floating point real numbers with a decimal point. Examples: 0.0, 2.24, -3.1e-10

 complex : Complex numbers of the form a+bj, j = √-1, Examples: 1.2j, 1+2j, 1.2e-10j

 

 

Type conversion    >>> X = 15.56; int(X)     # returns 15.

                         >>> X = 15;      float(X)  # returns 15.0
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Playing with List 

 >>> X.append(10); list(X)           # Adding ‘10’ at the right end of the list ‘X’ (ans: 2,3,4,1,5,0,10])

 >>> Y.append(‘RM’); list(Y)       # Adding ‘RM’ at the right end of the list ‘Y’ (ans:  

                                                                                                      [‘AKB’,’MC’,’SSB’,’PD’,’AD’,’RM’])

 >>> mean = sum(X)/len(X)         # Mean value from a list of numbers (ans: 15/6=2.5~2, as it 

                                                                                                                          is integer). 

 >>> mean=float(sum(X))/len(X) # type-casting to float / make any entry in list float, say, 1.0.

 >>> M = [3, ['a', -3.0, 5] ]       # (list within list) nested lists (for entering matrices)

>>> M[1][2]                             # returns 5 

>>> range(5) or L = list(range(5))    # generate numbers from 0 to 4 [0,1,2,3,4]

>>> range(1,10)                     # returns [0,1,2,3,4,5,6,7,8,9]

>>> range(1, 10, 2)                # numbers from 1 to 9 with stride 2 [1, 3, 5, 7, 9]. 

>>> L=list(range(17,29,4))    # returns [17, 21, 25]
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 Slicing                  Slicing a list between i and j creates a new list containing the elements 

                  starting at index i and ending just before j. L[i : j] means create a list by

                  taking all elements from L starting at L[i] until L[j-1] . 

>>> a = list( [2, 3, 1, 4, 5, 6, 9, 10, 1] ); len(a)   # returns length of a is 9.

>>> a[:]     # returns entire list.      

>>> a[1:]   # returns [3, 1, 4, 5, 6, 9, 10, 1]

>>> a[:1]   # returns 2                              

>>> a[3 : 6]  # returns [4, 5, 6]

Python allows the use of negative indexes for counting from the right. Element a[-1] is 

the last element in the list a.

                 → a[i:] amounts to taking all elements except the i first ones,

                 → a[:i] amounts to taking the first i elements,

                 → a[-i:] amounts to taking the last i elements,

                 → a[:-i] amounts to taking all elements except the i last ones.
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 Strides                  Length of the step from one index to the other (default stride is 1). 

>>> L = list(range(100))   # generate 0 to 99 

>>> L[:10:2]                      # [0, 2, 4, 6, 8]

>>> L[::20]                        # [0, 20, 40, 60, 80]

>>> L[10:20:3]                  # [10, 13, 16, 19]

>>> L[20:10:-3]                 # [20, 17, 14, 11] (negative stride).

 We can create a new list that is reversed using a negative stride → 

>>> L = [1, 2, 3]

>>> R = L[::-1]                  # R = [3, 2, 1]

Altering lists      Insertion, deletion of elements & list concatenation. With slicing 

notation, list insertion & deletion is done, deletion is just replacing a part of a list by an

empty list []

>>> L = ['a', 1, 2, 3, 4]                      >>> L[1:1] = [1000, 2000]    # ['a', 1000, 2000, 1, 3]

>>> L[2:3] = []                   # ['a', 1, 3, 4]

>>> L[3:] = []                     # ['a', 1, 3]
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 Two lists are concatenated by the plus operator + : >>> L = [1, -17]; 

 M = [-23.5, 18.3, 5.0]; L + M     # returns [1, -17, -23.5, 18.3, 5.0]

 Concatenating a list n times with itself using multiplication operator * :

>>> n = 3; n * [1.,17,3]              # returns [1., 17, 3, 1., 17, 3, 1., 17, 3]

>>> [0] * 5                                 # returns [0,0,0,0,0]          

                                                                                      L = [0, 1, 2, 3, 4]

list.append(x) → Add x to end of the list.                      L.append(5)  # [0, 1, 2, 3, 4, 5] 

list.remove(x) → Remove first item from list with x.     L.remove(0)  # [1, 2, 3, 4, 5]

list.insert(i,x)   → Insert x at position i.                          L.insert(0,0)  # [0, 1, 2, 3, 4, 5]

list.count(x)     → Number of times x appears in list.    L.count(2)     # 1

list.sort()         → Sort items of the list.                          L.sort()         # [0, 1, 2, 3, 4, 5]

list.reverse()   → Reverse the elements of the list.       L.reverse()   # [5, 4, 3, 2, 1, 0]

list.pop()         → Remove last element of the list.        L.pop()         # [0, 1, 2, 3, 4]

                                                                                      L.pop()         # [0, 1, 2, 3]
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 Tuples                 A tuple is an immutable list (cannot be modified). A tuple is just a comma-

separated sequence of objects (a list without brackets or encloses a tuple in a pair of

parentheses).  

 my_tuple = 1, 2, 3     # Our first tuple                             

 my_tuple = (1, 2, 3)   # Same as previous

 my_tuple = 1, 2, 3,    # Same as previous 

 len(my_tuple)            # 3, same as for lists 

 my_tuple[0] = 'a'       # error! Tuples are immutable

 The comma indicates that the object is a tuple:

 singleton = 1,            # Note the comma 

 len(singleton)            # 1

                                                                             a, b = 0, 1     # a gets 0 and b gets 1

                                                                             a, b = [0, 1]   # exactly the same effect

                                                                           (a, b) = 0, 1    # same

                                                                            [a,b] = [0,1]   # same thing

                 

 Tuples are useful when a group 

of values goes together, e.g. they 

are used to return multiple values 

from functions. One may assign 

several variables at once by 

unpacking a list or tuple: 
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 Array                An array object strores a group of elements (values) of same datatype. Know

 more from “>>> help()” & then “help>>> array”. To import array module, either, “import

 array” or “from array import *”. 

 from array import *                                  

 a = array(‘i’, [5, 6, -7, 8])        # i for signed integer, f for floating point (single dimension)

 arr = array(‘d’, [1.5, -2.2, 3.0, 5.75]  # d for double precision

 m = array(‘d’, [1.5, -2.2, 3.0, 5.75]   # d for double precision

                 To execute a set of command repeatedly, in python “for”, “while” loop is used.

                             For loop                                                      While loop

 sum=0                                                                sum=0; n=5;

 for x in range(begin, end, step):                         while sum<n:

      print “We are within a loop”                                   print sum

      sum += 1                                                               sum += 1                                       

 print ‘Sum of ‘, begin, ‘ to ’, end, ‘ is = ‘, sum     print ‘Summing 1 ’, n-1, ‘ times = ‘, sum

 Loops
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 Decision making (Logical statements)                                                                      If, If … else, If … elif ...else, Nested if ...are

 used for logical decision making. 

 If:  if x==10: print ‘x = ’, x       If-else: if x==10:                 If-elif-else:   

      OR                                                   print ‘x is 10’        a, b, c = input(‘Enter a,b,c: \n’)

      if x==10:                                       else:                        x = b*b - 4*a*c

         print “value of x is 10”                  print ‘x is not 10’   if x<0:

                                                                                              print 'x is negative.'

                                                                                           elif x>0:

                                                                                              print 'x is positive.'

                                                                                           else:

                                                                                              print 'x is zero.'

 

                 


