Thermal Ply sics - I
Development of Kinetic Theory:
Anonymono theory: 1761. J. Black: Observed same tumperalüre for ice \& water \& conjectured about "latent" heat.

1797 J. Watt: converted heat \rightarrow work as steam engine
1797 B. Thompson, C. Rumford: work \rightarrow heat Caloric fluid tho
kinetic throng: A. Lavoisier: conjectured heat as invisible fluid.
1824 S. Carnot: Carnot engine \rightarrow Thermochemistry.

1738 D. Bernoulli: molecular theory of fluid.
1847 J.P. Joule, J. ven Mayer, H. ven Helmholtz: heat \& work equivalent form of energy.
1850 R. Clausius: (a) showed that "caloric fluid theory" is reconciled in "kinetic theory,", (b) First law of Thermodynamics, (c) defined "entropy".
Experimental go l laws:
1662 Boyle's law: $p \propto v^{-1}$
1802 Charles's low: $v \propto T$
1802 Gay-Lussac's law:
International scale of temperature
Lord Kelvin introduced lowest temperature independent of property of substance

Sulphur point $444.6^{\circ} \mathrm{C}$
absolute zero $-273^{\circ} \mathrm{C}$ or ok
ice point $0^{\circ} \mathrm{C}$ or 273 K
steam point $100^{\circ} \mathrm{C}$ or 373 K

Antimony print $630.5^{\circ} \mathrm{C}$
Silver point $960.88^{\circ} \mathrm{C}$
Gold point $1063.8^{\circ} \mathrm{C}$

Human body temperature $98.4^{\circ} \mathrm{F} \Leftrightarrow 36.9^{\circ} \mathrm{C}$ (remember, least relation between $C, F, R($ Reumer scale) count is $0.1^{\circ} \mathrm{C}$)

$$
\frac{C}{5}=\frac{F-32}{9}=\frac{R}{4} .
$$

Basics of Thermometry
a) Liquid Thermometer: Hg in glan, 6's max-min, Beckmann, Index
b) Gas Thermometer: Callendar's Air, Hydrogen
c) Metal Thermometer: Platinum resistanee,
d) Thermoeletrie Thermometer: thermocouple generates e.m.f.
e) Radiation Thermometer: $e=a t+b t^{2}$
principle of thermometry: Let $A=$ thermometric property
For uniform variation of A with temperature T

$$
\begin{aligned}
& A_{T}=A_{0}(1+\alpha T), \quad A_{0}=\text { value of } A \text { at } 0^{\circ} \mathrm{C} \text {. } \\
& A_{100}=\text { value of } A \text { at } 100^{\circ} \mathrm{C} \text {. } \\
& A_{100}=A_{0}(1+100 \alpha) \\
& \therefore T=100 \frac{A_{T}-A_{0}}{A_{100}-A_{0}}
\end{aligned}
$$

What is A ? If you take simple Hg -inglan thermometer then $A=$ length of $H g$ column. For Pt -resistance thermometer $A=$ resistance R of $P t$. For constant volume gas thermometer $A=$ pressure of air.

Hg in glass thermometer
pros (a) liquid range $\left[-38.87^{\circ} \mathrm{C}, 356^{\circ} \mathrm{C}\right]$
(b) low thermal capacity \& high conductivity
(c) uniform expansion, (d) shining liquid (easy to see).

Cons (a) high specific gravity (less sensitive)
(b) high surface tension (motion is jerky)
unsuitable for low T.

Alcohol thermometer
pros (a) liquid range $\left[-112^{\circ} \mathrm{C}, 78^{\circ} \mathrm{C}\right]$
(b) high coefficient of expansion (more sensitive)
(c) Low surface tension (motion is smooth)
cons unsuitable for high temperature.
Gas thermometer (a) Very high coefficient of expansion (more sensitive
(b) low thermal capacity, low specific gravity
(c) constant volume / constant pressure thermometer.

Platinum Resistance: Resistance smobth in rage $\left[-200^{\circ} \mathrm{C}, 1200^{\circ} \mathrm{C}\right]$ thermometer

$$
\text { least count }=0.01^{\circ} \mathrm{C} \quad R_{t}=R_{0}(1+\alpha T)
$$

Low temperature Thermometry
OC O $^{\circ} 630^{\circ} \mathrm{C} \rightarrow$ all
$-20^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C} \rightarrow$ liquid, gas, resistance, thermocouple, vapour pressure.
$-272^{\circ} \mathrm{C}$ to $-20^{\circ} \mathrm{C} \rightarrow$ resistance, vapour pressure, magnetic
below $-272^{\circ} \mathrm{C} \rightarrow$ magnetic

High temperature thermometry
$630^{\circ} \mathrm{C}$ to $1000^{\circ} \mathrm{C} \rightarrow$ liquid, gas, resistance, thermocouple.
$1000^{\circ} \mathrm{C}$ to $1600^{\circ} \mathrm{C} \rightarrow$ gas, thermocouple.
$1600^{\circ} \mathrm{C}$ to $3000^{\circ} \mathrm{C}$ t thermocouple, pyrometer.

HW 1. At what temperature do the fahrenheit \& celsius scale I give the same reading?
2. In figure beside, which line represents

$$
c / 5=\frac{F-32}{9} ?
$$

3. In a constant volume gas thermometer, pressure
 of air at $0^{\circ} \mathrm{C}$ is $80 \mathrm{cen} f$ at $100^{\circ} \mathrm{C}$ is 109.3 cm . Calculate the temperature of a not bath, in which when the thermometer is immersed shows a pressure 100 cm .

Calorimetry Definition of Calorie (heat) \Rightarrow quantity of heat needed to raise temperature of 1 gum of water by $1^{\circ} \mathrm{C}$. But heat $5^{\circ} \mathrm{C} \rightarrow 6^{\circ} \mathrm{C} \neq 80^{\circ} \mathrm{C} \rightarrow 81^{\circ} \mathrm{C}$.
\# Mean calorie heat $\left[0^{\circ} \mathrm{C} \rightarrow 100^{\circ} \mathrm{C}\right] / 100$.
\# $15^{\circ} \mathrm{C}$ calorie heat $14.5^{\circ} \mathrm{C} \rightarrow 15.5^{\circ} \mathrm{C}$
B. ThoU. quantity of heat needed to raise temperature of 1 llb of water by $1^{\circ} \mathrm{F}$.

$$
1 \text { B.Th.U. }=252 \text { coals }
$$

Basic principle of Calorimetry conservation of heat energy or sum total of (body + heat bath) is conserved.

Specific heat of solid: Method of mixture, lopper block calorimeter, Electrical method (Lindemam calorimeter), latent heat (Bunsen ice calorimeter).

Specific heat of liquid: Method of mixture, Bunsen ice calorimeter, Metheof of cooling, Nernst calorimeter, continuous flow calorimeter.
Specific heat of gas: \#why constant pressure or volume?

$$
C=\frac{d Q}{d T} \rightarrow \quad \begin{aligned}
& \text { suppose system expands } \rightarrow \text { temperature falls } \\
& \text { toprevent }
\end{aligned}
$$ toprevent, $d Q$ heat added. so $d T=0$.

$$
C=\frac{d g}{0} \rightarrow \infty
$$

\rightarrow suppose syestun compresses \rightarrow temperature rise $d T$ without the need of $d g \quad \therefore d s=0$

$$
e=\frac{0}{d T}=0
$$

$$
\therefore \quad c_{p}=\left(\frac{d Q}{d T}\right)_{p}, \quad C_{V}=\left(\frac{d Q}{d T}\right)_{V}
$$

definition: at $P=$ constant, increase temperature of 1 gm of gas through $1^{\circ} \mathrm{C}$. If 1 gm molecule of gas is taken \rightarrow molar specific heat. $C_{p}=M C_{p}$
$C P>C$? \# heat transfer at $V=$ constant, $\quad d V=0 . \quad d W=P d V=0$ no work done by the gas.

$$
C_{p}-C_{v}=\frac{R}{J}
$$

So heat supplied transformed to thermal energy
(heat, \# heat transfer at $P=$ constant, $\quad d W=P d V \neq 0$.
$C_{P}-C_{V}=R$
so heat supplied \rightarrow thermal energy + external wok.
Isothermal: $T=$ constant $\quad P V=R T=$ constant
transformation
Adiabatic : $\quad Q=$ constant, $\quad d Q=C_{V} d T+P d V$.
transformation Now from $P V=R T, \quad P d V+V d P=R d T=\left(C_{P}-C_{V}\right) d T$

$$
\text { put } \begin{aligned}
d T \text { in (I): } \quad d Q & =C_{V} \frac{P d V+V d P}{C_{P}-C_{V}}+P d V=0 \quad \text { (as } Q=\text { constant) } \\
\therefore \quad & C_{V} V d P+C_{P} P d V=0
\end{aligned}
$$

$$
\text { or } \quad \frac{C_{p}}{C_{r}} \frac{d V}{V}=-\frac{d P}{P}, \quad\left(\text { put } \partial=\frac{C_{P}}{C_{v}}\right)
$$

Integrating both sides, $\quad \gamma \ln V=-\ln p+\ln C$.

$$
P V^{\gamma}=\text { constant }
$$

Corollary: $P T$ relation: $p u t P V=R T, \quad P\left(\frac{R T}{P}\right)^{\gamma}=C \Rightarrow P^{1-\gamma} T^{\gamma}=$ constant $V T$ relation; put $P V=R T, \quad \frac{R T}{V} V^{\prime}=C \Rightarrow V^{\prime-1} T=$ constant

Suppose dry air is enclosed in a cylinder fitted with piston. Initial temperature of air is $30^{\circ} \mathrm{C}$. Find the change in temperature if the gas is compressed (a) slowly, (b) suddenly to one-half of its volume? What'll be the pressure?
(a) piston naves inwards \rightarrow gas compresses

no dinge \leftarrow heat goes to \leftarrow temperature rises in surrounding by
tempenture conducting wall
(isothermal) slowly

$$
T=30^{\circ} \mathrm{C}
$$

(b) Temperature rise rate \ggg heat diffusion rate lo surrounching adiabatic process - no Q transfer.
So $P_{1} V_{1}^{\gamma}=P_{2} V_{2}^{\gamma}$ \& given $V_{2}=\frac{V_{1}}{2}$

$$
\therefore P_{2}=2^{-1} P_{1}=2^{1.4} P_{1}=2.6 P_{1}=2.6 \text { atm when } P_{1}=1 \text { atm. }
$$

Compare with isothermal, $P_{2}=2 P_{1}=2 \mathrm{~atm}$.
Again from $T V$ relation, $T_{1} V_{1}^{\nu-1}=F_{2} V_{2}^{\gamma-1}$

$$
\begin{aligned}
\therefore T_{2} & =T_{1}\left(\frac{V_{1}}{V_{2}}\right)^{2 .-1}=2^{0.4} T_{1}=1.319 \times(273+30) \mathrm{K} \\
& =399.7 \mathrm{~K}=(399.7-273)^{\circ} \mathrm{e}=127^{\circ} \mathrm{C} .
\end{aligned}
$$

NW W 4. Air in a Widson's cloud clamber at $20^{\circ} \mathrm{C}$ is abruptly expanded to 1. 4 times its initial volume. Calculate the final timperature. Given $\lambda=1.4$.
5. At 10^{6} dynes/ an $/ \mathrm{an}^{2}$ pressure, a gas $(\lambda=1.4)$ expands is othermally until its volume is double of the initial volume. Then it adiabatically expands until its volume is redoubled. Calculate the final pressure of the gas.

Kinetic Theory of Gases (K.T.)
Rule of thumb: Every material (solid, liquid, gas, plasma, intermedial phases) are made of atoms. Then "may" attract or repel \& form molecules of liquid or be restricted in definite shape of solid by huge cohesive force.
Experimental hints in favour of $K . T_{\text {. }}$

1. Diffusion and Solution:

when slowly poured Alcohol over water, it spreads throughout.
2. Expansion of substance with heat. : atoms tend to move away.
3. Phenomena of evaporation $\&$ vapour pressure.
4. Brownian motion. 1827 R. Brown t incessant motion of polens on water.
Basic assumptions \& postulates of K.T.
5. A gas consists of large number of identical atoms, which are rigid, elastic $\&$ equal mass objects.
6. Atoms are in chaos \rightarrow motion is fully irregular f spans in all three directions.
7. Inevitably the gas molecules collide with each other \& surface of container (wall, sphere, cylinder). Total K.E. remains constant, but velocity of each atom continuously changes bott in magnitude \& direction. In evolving state (intermediate) density in a volume element will change but in steady state, collisions do not affect the density.
A. In between two successive collisions, molecules move in straight line following Newton's law.
8. Collisions are perfectly elastic i.e. no force of attraction/ repuslion (P.E. $=0$), energy is fully kinetic.
9. Atoms are "point" mass, meaning, their total volume $\lll \ll$. volume of the container.

Concept of solid angle
Solid angle subtended by an area at a point is defined as the area
 intercepted boy the cone on a unit sphere (radius =1) with its centre at the apex of the cone.

If $d S$ is an area that makes a solid angle $d \omega$ at origin O at a distance $00^{\prime}=\gamma$, then from similar figures.

$$
\frac{d \omega}{1^{2}}=\frac{d s \cos \theta}{r^{2}} \quad \therefore \quad d \omega=\frac{d s \cos \theta}{r^{2}}
$$

unit of solid angle $=$ steradian.
CW

1. Calculate the solid angle (a) subtended by an infinite plain at a point in front of it, (b) hemisphere and (c) full sphere at its center.

Consider the annular ring, r distance apart from p \& thick $d r$.

$$
\text { Area of this ring }=\pi(r+d r)^{2}-\pi r^{2}
$$ $=2 \pi r d r$

(N.B. we throw $O\left(\mathrm{dr}^{2}\right)$ term in limit $d r \rightarrow 0$)
So solid angle subtended boy that circular annulus;

$$
d \omega=\frac{d S \cos \theta}{O Q^{2}}=\frac{2 \pi r d r \cos \theta}{r^{2}+x^{2}}
$$

Infinite plain meaning θ going from of $\pi / 2$.

$$
\begin{aligned}
\therefore \omega & =\int_{\theta=0}^{\pi / 2} \frac{2 \pi r d r \cos \theta}{r^{2}+x^{2}} \\
& =2 \pi \int_{\theta=0}^{\pi / 2} \frac{x \tan \theta x \sec ^{2} \theta d \theta \cos \theta}{x^{2} \sec ^{2} \theta} \\
& =2 \pi \int_{0}^{\pi / 2} \sin \theta d \theta=2 \pi
\end{aligned}
$$

$$
[r=x \tan \theta
$$

$$
d r=x \sec ^{2} \theta d \theta
$$

Hemisphere

$$
\begin{aligned}
& L P=a \\
& O P=r \\
& \frac{a}{r}=\sin \theta
\end{aligned}
$$

$$
\begin{aligned}
4 P Q & =a d \phi \\
P S & =r d \theta \\
\therefore d S & =\text { area } P Q R S=a d \varnothing \times r d \theta=r^{2} \sin \theta d \theta d \varnothing
\end{aligned}
$$

So dw at point $0=\frac{r^{2} \sin \theta d \theta d \phi}{r^{2}} \times \cos 0=\sin \theta d \theta \phi \phi$.
So solid angle subtended $=\int d \omega=\int_{\theta=0}^{\pi / 2} \int_{\phi=0}^{2 \pi} \sin \theta d \theta d \phi=2 \pi$.
Full sphere

$$
\text { vol sphere } \quad \text { sughe subtended }=\int_{\theta=0}^{\pi} \int_{\phi=0}^{2 \pi} \sin \theta d \theta d \phi=4 \pi
$$

We will find out now pressure exerted boy a perfect gas from K.T. (a) collisiouless atoms in a box moving in 3 directions, (b) collisionlus atoms coning from all directions. collision will be dealt in "mean free path".

Method 1 $\quad A B=A D=A E=\ell$
The gas is confined within this cube of volume l^{3}. P (say) is a gas atom
 with velocity " C " whose components in 3 -direction is (u, v, ω). $N=$ total no. of atoms or molecules.
So each of them have different velocity $c_{1}, c_{2}, c_{3}, c_{4}, \ldots$ etc so different components $\left(u_{1}, v_{1}, \omega_{1}\right),\left(u_{2}, v_{2}, \omega_{2}\right),\left(u_{3}, v_{3}, \omega_{3}\right), \ldots$.
Mean square average $\overline{c^{2}}=\frac{c_{1}^{2}+c_{2}^{2}+c_{3}^{2}+\cdots}{N}=\frac{u_{1}^{2}+u_{2}^{2}+u_{3}^{2}+\cdots}{N}$

$$
\begin{array}{ll}
& +\frac{v_{1}^{2}+v_{2}^{2}+v_{3}^{2}+\cdots}{N}+\frac{\omega_{1}^{2}+\omega_{2}^{2}+\omega_{3}^{2}+\cdots}{N} \\
\text { mean square }_{u^{2}}^{\text {velocity in }} \begin{array}{l}
v^{2}+\overline{\omega^{2}} \\
x \text {-direction }
\end{array} & \text { (1) } \tag{1}\\
\text { Y-diretion } & z \text {-direction. }
\end{array}
$$

Consider particle p with mass $u a$, velocity $\vec{c}=(\vec{u}, \vec{v}, \vec{\omega})$.
It travels from $A B C D$ to $E F G H$, makes collision to exert pressure, rebounds elastically, momentum gets changed, comes back to $A B C D$ to make another collission.

Total distance troweled with velocity u is $2 l$.
\therefore Time between collission $=\frac{2 l}{u}$, meaning number of collission per second $=\frac{u}{2 l}$.
Momentum imparted in $+X$ direction of on $E F G H=m u$.
Momentum obtained in $-x$ direction after collission $=-m u$.

$$
\therefore \text { charge of momentum }=m u-(-m u)=2 m u \text {. }
$$

Rate of change of momentum for one atom in x direction

$$
=2 m u \times \frac{u}{2 l}=\frac{m u^{2}}{l}
$$

Similarly in Y and Z direction, rate of change of momentum is $\frac{m v^{2}}{l}$ \& $\frac{m w^{2}}{l}$ for one atom
\therefore Total rate of change of momentum for all atoms per unit area along x direction is

$$
\begin{equation*}
P_{x}=\frac{m\left(u_{1}^{2}+u_{2}^{2}+u_{3}^{2}+\cdots\right)}{l} \times \frac{1}{l^{2}}=m \bar{u}^{2} \frac{N}{l^{3}}=\operatorname{mnn}^{2} \text { (see eq.. } \tag{1}
\end{equation*}
$$

Similarly $P_{y}=m n \bar{v}^{2}, p_{z}=m n \bar{\omega}^{2}$.
In steady state, molecules move in all directions, so no preference, meaning $\bar{u}^{2}=\bar{v}^{2}=\bar{w}^{2}$, \& $P_{x}=P_{y}=P_{z}$.

Meaning $\bar{u}^{2}=\bar{v}^{2}=\bar{w}^{2}=\frac{1}{3} \bar{c}^{2}$ (see eq". (1))
collecting all pieces together,

$$
P_{x}=P_{y}=P_{z}=\frac{1}{3} m n c^{-2} \text { or } \quad P=\frac{1}{3} m n c^{-2}
$$

Method 2

\therefore number of molecules per unit volume within velocity range $c \& c+d c\left[d n_{c}\right]$, within direction $\theta \& \theta+d \theta$ \& $\phi \& \phi+d \phi$ $[d \omega=\sin \theta d \theta d \phi]$

$$
d u_{c, \theta, \phi}=\frac{d u_{c}}{4 \pi} \sin \theta d \theta d \phi
$$

Let's find now, how many of them strike $d A$ of the wall of container. qeametrically, this is the number of molecules within the slanted prism of length c dit with estes in the direction $\theta \& \phi=\frac{d u_{c}}{4 \pi} \sin \theta d \theta d \varnothing \times c d A \cos \theta d t$
\therefore Total member of collisions at $d A$ per unit time

$$
\begin{aligned}
& \int_{c=0}^{\infty} \int_{\theta=0}^{\pi / 2} \int_{\phi=0}^{2 \pi} \frac{d n_{c}}{4 \pi} \sin \theta d \theta d \phi \times c d A \cos \theta \\
&= \frac{d A}{4 \pi} \int_{0}^{\infty} c d n_{c} \int_{0}^{\pi / 2} \sin \theta \cos \theta d \theta \int_{0}^{2 \pi} d \phi \\
& \underbrace{2}_{2 \pi}
\end{aligned}
$$

If n_{1} atoms per unit volume moves with velocity c_{1},

$$
\begin{array}{lllllll}
n_{2} & 11 & " & " & " & 11 & c_{2}, \\
n_{3} & 11 & " & " & 1 & " & c_{3}, \ldots
\end{array}
$$

$$
=\frac{\sum n_{i} e_{i}}{\sum n_{i}}=\frac{1}{n} \int_{0}^{\infty} c d n_{c}
$$

\therefore Number of molecules colliding at $d A$ of the container per unit time $=\frac{d A}{4} n \bar{c}$

Now let's compute change in momentum by molecules striking area $d A$ in unit time.
normal component of incident momentum is mc $\cos \theta$ \& reflected momentum - me cos θ.

So each atom had a change in momentum $2 m c \cos \theta$.
\therefore Total change of momentum experienced by all gas atoms/molecules colliding to area $d A$, per unit time
is

$$
\begin{aligned}
& \quad \int_{c=0}^{\infty} \int_{\theta=0}^{\pi / 2} \int_{\phi=0}^{2 \pi} \frac{d n_{c}}{4 \pi} \sin \theta d \theta d \phi \times c d A \cos \theta \times 2 m c \cos \theta \\
& =\frac{m d A}{2 \pi} \int_{c=0}^{\infty} c^{2} d n_{c} \int_{\theta=0}^{\pi / 2} \cos ^{2} \theta \sin \theta d \theta \int_{\phi=0}^{2 \pi} d \phi \\
& C_{r m s}^{2}=c^{2}=\frac{1}{3} m d A \int_{c=0}^{\infty} c^{2} d n_{c} \\
& =\int_{0}^{\infty} \frac{n_{1} c_{1}^{2}+n_{2} c_{2}^{2}+n_{3} c_{3}^{2}+\cdots}{n_{1}+n_{2}+n_{3}+\cdots}=\frac{\sum n_{i} c_{i}^{2}}{\sum n_{i}}
\end{aligned}
$$

\therefore Force exerted by gas atoms on $d A$ is

$$
F=\frac{1}{3} m d A n \bar{c}^{2}
$$

Thus, pressure exerted $\quad P=\frac{F}{d A}=\frac{1}{3} m n e^{-2}$
Corollary from above, $p=\frac{1}{3} \rho \bar{c}^{2} \Rightarrow \bar{c}=\sqrt{\frac{3 P}{\rho}}$
For Hydrogen $\mathcal{J}=8.9 \times 10^{-5} \mathrm{gm} / \mathrm{ce}$.
1 atm pressure $P=h \rho g=76 \times 13.6 \times 981$ dynes $/ \mathrm{cm}^{2}$

$$
\begin{aligned}
& \therefore \bar{c}=\sqrt{\frac{3 \times 76 \times 13.6 \times 981}{8.9 \times 10^{-5}}}=\underline{1.85 \mathrm{~cm} / \mathrm{sec} .} \\
& \begin{aligned}
c_{l} & =3 \times 10^{8} \mathrm{~m} / \mathrm{s}, \quad c_{S} \\
l & =300 \mathrm{~m} / \mathrm{s} \\
& =3 \times 10^{10} \mathrm{~cm} / \mathrm{s}, \quad
\end{aligned}=3 \times 10^{4} \mathrm{~cm} / \mathrm{s}
\end{aligned}
$$

Kinetic interpretation of temperature
from K.T. $\rho=\frac{1}{3} m n c^{-2}=\frac{1}{3} m \frac{N}{V} c^{-2}$
But we assume!!

$$
\therefore P V=\frac{1}{3} m N \bar{c}^{-2}=R T \text { Boyle's law } \bar{X}
$$

$\bar{C}=\sqrt{\frac{3 R T}{m N}}=\sqrt{\frac{3 R T}{M}}$ where $M=$ molecular weight
\therefore e $\propto \sqrt{\pi}$ RMS velocity of gan atom in proportional to square rot of absolute temperature.
As from $T=0, \bar{C}=0$ ie. absolute zero temperature is where molecule cease to move.

Now $\quad \bar{c}^{2}=\frac{3 R T}{M} \Rightarrow \frac{1}{2} M \bar{c}^{-2}=\frac{3}{2} R T$.
divide by $N, \quad \frac{1}{2} m \bar{c}^{-2}=\frac{3}{2} K_{B_{H}}^{\top}, \quad K_{B}=\begin{aligned} & \text { Boltzmann's } \\ & \text { constant. }\end{aligned}$
for a given T, there is always a K.E. \& molecular collission lead to uniform T.

Boyle's law from K.T.

$$
\dot{P V}=\frac{1}{3} M \bar{e}^{2} \& \text { perse } e^{2} \alpha T
$$

So if T is fixed e^{-2} is constant so $P V=$ comtant.
Charge's law from K.T.
Again $\bar{c}^{2} \propto T$, so $p v \propto T$.
ie. $v \propto T$ when $p=$ constant.

Avogadro's law from K.T.
For same $T \& P$, equal V of gases contain equal number of atoms.

$$
\begin{array}{|c|c|c}
\hline P . V_{1} \\
N_{1}
\end{array} \quad\left[\begin{array}{c}
P, v_{1} \\
N_{2} \\
2
\end{array} \quad \begin{array}{l}
P=\frac{1}{3} m_{1} \frac{N_{1}}{V} \bar{C}_{1}^{2} \\
P=\frac{1}{2} m_{2} N_{2} \bar{C}_{2}^{2}
\end{array} \quad \therefore m_{1} N_{1} \bar{C}_{1}^{2}=m_{2} N_{2} \bar{C}_{2}^{2} .\right.
$$

But T is equal, so K.E. is equal.

$$
\begin{gathered}
\frac{1}{2} m_{1} \bar{c}^{2}=\frac{1}{2} m_{2} \bar{e}_{2}^{2} \Rightarrow m_{1} \bar{c}_{1}^{2}=m_{2} \bar{c}_{2}^{2} \\
\therefore N_{1}=N_{2}
\end{gathered}
$$

Clapeyron's equation from K.T.

$$
\begin{array}{rlrl}
P & =\frac{1}{3} m n e^{-2}=\frac{1}{3} \frac{n}{N} m N C^{2} & =\frac{n}{N} \times \frac{1}{3} M C^{2} \\
& =\frac{n}{N} R T=n K_{B} T . & {\left[K_{B}=\frac{R}{N}\right]} \\
N & =6.023 \times 10^{23} \text { atoms/mole. }
\end{array}
$$

Universal gas constant $R \quad P V=R T$.

$$
\begin{aligned}
\therefore R & =\frac{P V}{T}=\frac{(76 \times 13.6 \times 981) \times 22.4 \times 10^{3}}{273} \\
& =8.31 \times 10^{7} \begin{array}{c}
\text { dynes }-\mathrm{cm} / \mathrm{K} / \text { mole or } \\
\text { erg } / \text { deg } / \text { mole. }
\end{array}
\end{aligned}
$$

$$
\text { in heat units, }=\frac{8.31 \times 10^{7}}{4.18 \times 10^{7}}=2 \mathrm{cal} / \mathrm{degk} / \mathrm{mole}
$$

$$
\text { \& } K_{B}=\frac{R}{N}=\frac{8.31 \times 10^{7}}{6.023 \times 10^{23}}=1.38 \times 10^{-16} \text { ergs } / \mathrm{degk} / \mathrm{mole}
$$

Dalton's law of partial pressure
N no. of gases wits density $\rho_{1}, \rho_{2}, \rho_{3}$ with rms veloritis $\bar{c}_{1}, \bar{c}_{2}, \bar{c}_{3}$ etc, $P=\frac{1}{3} \rho_{1} \bar{c}_{1}^{2}+\frac{1}{3} \rho_{2} \bar{c}_{2}^{2}+\frac{1}{3} \rho_{3} \bar{c}_{3}^{2}=P_{1}+P_{2}+P_{3}+\cdots$

Relation between pressure \& K.E.

$$
P=\frac{1}{3} \rho \bar{c}^{-2}=\frac{2}{3} \frac{1}{2} \rho \bar{C}^{2}=\frac{2}{3} E
$$

so pressure of a gas is $2 / 3$ the translational K.E. of the atoms per unit volume.
CW Compute the r.m.s. velocity of oxygen \& hydrogen atoms at $27^{\circ} \mathrm{C}$. Given, density of oxygen at N.T.P.
$=1.43 \mathrm{~kg} / \mathrm{m}^{3} \&$ molecular weight of $\mathrm{CO}_{2}=44 \mathrm{gm}$, (molecular weight of $\mathrm{O}_{2}=32 \mathrm{gm}$).
at N.T.P. $\left(T_{0}=273 \mathrm{k}\right)$ for $0_{2}, \rho_{0}=1.43 \mathrm{~kg} / \mathrm{m}^{3}$.
[If not this supplied, then molecular wright $=32 \mathrm{gm}$

$$
=0.032 \mathrm{~kg}
$$

at N.T.P. gram molecular volume $=22.4$ litre

$$
\begin{aligned}
& =22.4 \times 10^{-3} \mathrm{~m}^{3} \\
& =0.0224 \mathrm{~m}^{3} .
\end{aligned}
$$

Density $\left.\rho_{0}=\frac{0.032}{0.0224}=1.43 \mathrm{~kg} / \mathrm{m}^{3}\right]$
Similarly for CO_{2}, density $S_{0}=\frac{0.044}{0.0224}=1.96 \mathrm{~kg} / \mathrm{m}^{3}$ at N.T.P.
Using K.T. we have $S_{0} T_{0}=\rho T$.

$$
\begin{aligned}
\therefore \rho_{27^{\circ}} & =\frac{\rho_{0} T_{0}}{T}=\frac{1.43 \times 273}{(27+273)}=1.3 \mathrm{~kg} / \mathrm{m}^{3} \text { for } O_{2} \\
\rho_{27^{\circ}} & =\frac{\rho_{0} T_{0}}{T}=\frac{1.96 \times 273}{(27+273)}=1.79=\mathrm{kg} / \mathrm{m}^{3} \text { for } \mathrm{CO}_{2}
\end{aligned}
$$

pressure $P=0.76 \times 13.6 \times 10^{3} \times 9.8=1.013 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$.
from K.T. $\quad P=\frac{1}{3} \rho c^{-2}$
So r.m.s. velocity

$$
\begin{aligned}
\bar{c}_{O_{2}}=\sqrt{\frac{3 P}{s_{O_{2}}}} & =\sqrt{\frac{3 \times 1.013 \times 10^{5}}{1.3}} \\
\bar{c}_{\mathrm{CO}_{2}}=\sqrt{\frac{3 P}{\rho_{\mathrm{CO}_{2}}}} & =\frac{4.835 \times 10^{2} \mathrm{~m} / \mathrm{s}}{\frac{3 \times 1.013 \times 10^{5}}{1.79}} \\
& =4.12 \times 10^{2} \mathrm{~m} / \mathrm{s} .
\end{aligned}
$$

HoW)

1. Calculate the number of moleenles/ec of an ideal gas at $27^{\circ} \mathrm{C}$ \& at pressure of 20 mm of mercury Density of mercury $=13.6 \mathrm{gm} /$ ce \& mean $K E$ of a molecule at $27^{\circ} \mathrm{C}$ is 4×10^{-21} Joules.
2. At what temperature will the r.m.s. velocity of a gas will become half its value at $0^{\circ} \mathrm{C}$?

Maxwell-Boltzmann law of distribution of velocity
The question is what is due? Physically $d x_{c}$ is no. of atoms per unit volume within velocity $C \& C+d C$. Can we calculate $d n_{c}$? $d u_{c} \stackrel{?}{=} f(P, T)$.
J.C. Maxwell computed it io r 1859.

Let's digress 4 an excursion to random events \& what we mean by "probability".

If there are N number of exhaustive, mutually exclusive and equally likely events of which M number are favourable to event A, then

$$
P(A)=\frac{M}{N}
$$

If two events A \& B mutually exclusive, then total probability of either of them to happen in a trial is $P(A)+P(B)$
If two events $A \& B$ happen independently, then total probability of both events happening simultaneously in a trial is $P(A) P(B)$.

If x is random variable defined by a function $f(x)$, then $f(x) d x=$ probability of a variate falling within $x \& x+d x$.

Assumptions: (a) density is uniform \& velocity is all dincetion is equal.
(b) isotropy \rightarrow results independent of coordinate system.
(c) velocities in any 3 coordinates is independent

If a molecule at 0 has velocity $\vec{e}=(u \hat{i}, v \hat{j}, \omega \hat{k})$ thew $c^{2}=u^{2}+v^{2}+w^{2}$. components u, v, w can change as \vec{c} changes direction but magnitude of $c=$ constant.

$$
\therefore \quad d c^{2}=0=2 u d u+2 v d v+2 \omega d \omega
$$

$$
\begin{equation*}
\text { So } u d u+v d v+w d w=0 \tag{1}
\end{equation*}
$$

This means $d u, d v f d w$ are not independent.
Probability that an atom has x component of velocily $u \& u+d u$ is $f(u) d u$, mathematically, $p_{u}=\frac{d u_{u}}{u}=f(u) d u$.
$u=$ number density.
Similarly, between $v f v+d v$ is $P_{v}=\frac{d n_{v}}{n}=f(v) d v$
" $\quad \omega \& \omega+d \omega \circ P_{\omega}=\frac{d u_{\omega}}{n}=f(\omega) d \omega$.
As they're independent, the total probability is

$$
\begin{aligned}
& P_{u, v, w}=\frac{d u_{u, v, w}}{w}=f(u) f(v) f(\omega) d u d v d \omega \\
& d u_{u, v, w}=n f(u) f(v) f(\omega) d u d v d \omega, \text { als means } \\
& d N_{u, v, w}=N f(u) f(v) f(w) d u d v d w
\end{aligned}
$$

So in N number of molecules. $d N_{u, v, w}$ means this many of them are between $u \& u+d u$, $v \& v+d v, w \& w+d w$.
\therefore Molecular density $\rho=\frac{d N_{u, v, \omega}}{d u d v d \omega}=N f(u) f(v) f(\omega)$
L as this is uniform, $d s=0$

$$
\begin{aligned}
= & 0 \\
= & f^{\prime}(u) f(v) f(w) d u+f(u) f^{\prime}(v) f(w) d v+ \\
& f(u) f(v) f^{\prime}(w) d w .
\end{aligned}
$$

$$
\text { Divide boy } \frac{1}{f(u) f(v) f(\omega)} \Rightarrow \frac{f^{\prime}(u)}{f(u)} d u+\frac{f^{\prime}(v)}{f(v)} d v+\frac{f^{\prime}(w)}{f(\omega)} d \omega=0
$$

When (1) \& (2) both are true, we invoke Lagrange's undetermined multiplier \& do (1) $x \alpha+(2)$,

$$
\left[\frac{f^{\prime}(u)}{f(\omega)}+\alpha u\right] d u+\left[\frac{f^{\prime}(v)}{f(v)}+\alpha v\right] d v+\left[\frac{f^{\prime}(\omega)}{f(\omega)}+\alpha \omega\right] d \omega=0
$$

If we say, du is dependent, then we choose α such that

$$
\frac{f^{\prime}(u)}{f(u)}+\alpha u=0
$$

\& because $d v \& d \omega$ is dependent, so

$$
\begin{aligned}
& \frac{f^{\prime}(v)}{f(v)}+\alpha v=0, \frac{f^{\prime}(\omega)}{f(\omega)}+\alpha \omega=0 . \\
& \therefore \therefore \frac{d f(u)}{f(u)}=-\alpha u d u .
\end{aligned}
$$

Integrating, $\ln f(u)=-\frac{\alpha}{2} u^{2}+\ln A$

$$
\text { or } f(u)=A e^{-\alpha u^{2} / 2}=A e^{-b \Delta u^{2}} \quad\{b=\alpha / 2\}
$$

Similarly, $f(v)=A e^{-b v^{2}}, f(\omega)=A e^{-b \omega^{2}}$

So $\int=N A^{3} e^{-b\left(u^{2}+v^{2}+\omega^{2}\right)}=N A^{3} e^{-b c^{2}} \%$

$$
d_{u, v, w}=N A^{3} e^{-b\left(u^{2}+v^{2}+w^{2}\right)} d u d v d w
$$

What is remaining now io to find out
 constants A \& b.

$$
\begin{aligned}
& \int_{0}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} d N_{u, w, w}=N \\
& \text { or } N A^{3} \int_{-\infty}^{a} e^{-b u^{2}} d u \int_{-\infty}^{\infty} e^{-b v^{2}} d v \int_{-\infty}^{\infty} e^{-b \omega^{2}} d \omega=N \\
& \text { [Now } \int_{-\infty}^{\infty} e^{-b u^{2}} d u \\
& \text { Let } b u^{2}=z \\
& 2 b u d u=d z \\
& \therefore d u=\frac{d z \sqrt{b}}{2 b \sqrt{z}} \\
& =\int_{-\infty}^{\infty} e^{-\infty} \frac{1}{2 \sqrt{b}} z^{-1 / 2} d z \\
& \left.=\frac{1}{2 \sqrt{b}} d \int_{0}^{\infty} e^{-z} z-1 / 2 d z=\frac{\Gamma(1 / 2)}{\sqrt{b}}=\sqrt{\frac{\pi}{b}} \cdot\right] \\
& A^{3}\left(\frac{\pi}{b}\right)^{9 / 2}=1 . \quad c_{0} \quad A=\sqrt{\frac{b}{\pi}}
\end{aligned}
$$

Evaluate b
Collisions per second

$$
=\text { area } \times \text { velocity } \times
$$ number density at that

$$
=1 \times u \times u_{u}
$$

Change in momentum $=2 \mathrm{mu}$.
So pressure $=$ rate of change of momentum per unit area

$$
\begin{aligned}
P_{u} & =\sum_{u=0}^{\infty} u n_{u} \times 2 m u=2 m \sum_{0}^{\infty} n_{u} u^{2}=2 m \int_{0}^{\infty} n_{u} u^{2} f(u) d u \\
& =2 m n_{u} \int_{0}^{\infty} A e^{-b u^{2}} u^{2} d u
\end{aligned}
$$

$$
\left.\begin{array}{rl}
\therefore p_{u} & =2 m n_{u} A \int_{0}^{\infty} e^{-z} \frac{z}{b} \frac{d z \sqrt{b}}{2 b \sqrt{z}} \\
& =\frac{m n_{u} A}{2 b^{3 / 2}} \Gamma\left(\frac{1}{2}\right) \quad\left[p u t b u^{2}=z\right] \\
& =\frac{m n_{u}}{2 b^{3 / 2}} \frac{b^{1 / 2}}{\pi^{1 / 2}} \cdot \pi^{1 / 2}
\end{array} \quad \Gamma\left(\frac{3}{2}\right)=\frac{1}{2} r\left(\frac{1}{2}\right)\right]
$$

[from Clapeyron's equation]

$$
\begin{aligned}
& \therefore b=\frac{m}{2 K_{B} T}, \quad A=\sqrt{\frac{b}{\pi}}=\sqrt{\frac{m}{2 \pi K_{B} T}} \\
& \therefore \quad d N_{u, v, \omega}=N\left(\frac{m}{2 \pi K_{B} T}\right)^{3 / 2} e^{-\frac{m}{2 K_{B} T}\left(u^{2}+v^{2}+\omega^{2}\right)} d u d v d \omega
\end{aligned}
$$

volume between $c \& e+d c$ is

$$
\begin{aligned}
& \frac{4}{3} \pi(c+d c)^{3}-\frac{4}{3} \pi c^{3} \\
= & \frac{4}{3} \pi c^{3}+\frac{4}{3} \pi 3 c^{2} d c+\frac{4}{3} \pi 3 c(d c)^{2}+\frac{4}{3} \pi(d c)^{3} \\
& -\frac{4}{3} \pi c^{3} \\
= & 4 \pi c^{2} d c . \quad 2
\end{aligned}
$$

$$
\begin{aligned}
& =4 \pi c d c \\
\therefore & d N_{c}=N\left(\frac{m}{2 \pi k_{B} T}\right)^{3 / 2} e^{-\frac{m c^{2}}{2 k_{B} T}} 4 \pi c^{2} d c \\
\therefore & P_{c}=\frac{d N_{c}}{N}=4 \pi\left(\frac{m}{2 \pi k_{B} T}\right)^{3 / 2} e^{2} e^{-\frac{m c^{2}}{2 k_{B} T}} d c=F_{c} d c .
\end{aligned}
$$

Remarks: (a) $c \rightarrow 0, F_{c} \rightarrow 0$
(b) $c \rightarrow \infty, \quad F_{c} \rightarrow 0$

$$
\begin{aligned}
C_{m}= & F_{C}^{\text {maximum }} \\
= & \text { most probable velocity } \\
= & \text { maximum no. of atoms } \\
& \text { will possess this velocity }
\end{aligned}
$$

Velocity component disbibution
What is the number of molecules within velocity u \& $u+d u$ but any value in \hat{y} or \hat{z} direction.

$$
d N{ }_{u, v, \omega}=N\left(\frac{m}{2 \pi k_{B} T}\right)^{3 / 2} e^{-\frac{m}{2 k_{B} T}\left(u^{2}+v^{2}+\omega^{2}\right)} d u d v d \omega
$$

$$
\therefore d N_{u}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} d N u, v, \omega
$$

$$
=N\left(\frac{m}{2 \pi K_{B} T}\right)^{3 / 2} d u \int_{-\infty}^{\infty} e^{-\frac{m v^{2}}{2 k_{B} T}} d v \int_{-\infty}^{\infty} e^{-\frac{m \omega^{2}}{2 k_{B} T}} d \omega x
$$

$$
\left[\begin{array}{l}
\text { Now } \int_{-\infty}^{\infty} e^{-\frac{m v^{2}}{2 K_{B} T}} d v=2 \int_{0}^{\infty} e \\
=\frac{2 \sqrt{K_{B} T}}{\sqrt{2} \sqrt{z M}} \int_{0}^{\infty} e^{-z} z^{-1 / 2} d z
\end{array}\right.
$$

$$
\begin{aligned}
{[\rho u t z} & =\frac{m v^{2}}{2 k_{B} T} \\
d z & =\frac{m v d v}{k_{B} T} \\
d v & \left.=\frac{k_{B} T d z}{m \sqrt{2 k_{B} T} \sqrt{z}}\right]
\end{aligned}
$$

$$
\therefore d N_{u}=N\left(\frac{m}{2 \pi K_{B} T}\right)^{3 / 2}\left(\frac{2 \pi K_{B} T}{m}\right)^{2 / 2} e^{-\frac{m u^{2}}{2 K_{B} T}} d u
$$

$$
d N_{u}=N\left(\frac{m}{2 \pi k_{B} T}\right)^{1 / 2} e^{-\frac{m u^{2}}{2 k_{B} T}} d u
$$

Similarly, $d_{v}=N\left(\frac{m}{2 \pi K_{B} T}\right)^{1_{2}} e^{-\frac{m v}{2 K_{B} T}} d v$

$$
d N_{\omega}=N\left(\frac{m}{2 \pi K_{B} T}\right)^{y_{2}} e^{-\frac{m \omega^{2}}{2 K_{B} T}} d \omega
$$

Average velocity, RMS velocity, Most probable velouty,

$$
\text { Avg velocity }\langle C\rangle=\frac{N_{1} C_{1}+N_{2} C_{2}+\cdots}{N_{1}+N_{2}+\cdots}=\frac{\sum N_{i} C_{i}}{\sum N_{i}}
$$

$$
=\int_{0}^{\infty} c d N_{c} / N
$$

$$
\begin{aligned}
& \text { remember, } \\
& A=\left(\frac{m}{2 \pi k_{B} T}\right)^{1 / 2} \\
& =4 \pi\left(\frac{m}{2 \pi k_{B} T}\right)^{3 / 2} \int_{0}^{\infty} c \cdot c^{2} e^{-\frac{m c^{2}}{2 k_{B} T}} d c \\
& b=\frac{m}{2 k_{B T}} \quad=4 \pi A^{3} \int_{0}^{\infty} c^{3} e^{-b c^{0}} d c \\
& =4 \pi A^{3} \int_{0} \frac{z}{b} e^{-z} \frac{d z}{2 b}=\frac{4 \pi A^{3}}{2 b^{2}} \int e^{-z} z d z \\
& \text { put be }=z \\
& 2 b c d c=d z \\
& =\frac{4 \pi A^{3}}{2 b^{2}} \Gamma(2)=\frac{4 \pi A^{3}}{2 b^{2}}=4 \pi \frac{m}{2 \pi k_{B} T}\left(\frac{m}{2 \pi K_{B} T}\right)^{1 / 2} \times \\
& \Gamma(2)=1 \\
& =\left(\frac{8 k_{B} T}{m \pi}\right)^{1 / 2} \\
& \frac{4 K_{B}^{2} T^{2}}{2 m^{2}} \\
& \therefore\langle c\rangle=\sqrt{\frac{8 K_{B} T}{m \pi}}
\end{aligned}
$$

RMS velocity $c_{\text {rms }}^{2}=\frac{\sum N_{i} C_{i}^{2}}{\sum N_{i}}=\frac{1}{N} \int_{0}^{\infty} c^{2} d N_{c}$

$$
\begin{aligned}
& =4 \pi A^{3} \int_{0}^{\infty} e^{4} e^{-b c^{2}} d c \\
& =4 \pi A^{3} \int_{0}^{\infty} \frac{z^{2}}{b^{2}} e^{-z} \frac{d z \sqrt{b}}{2 b \sqrt{z}} \\
& =\frac{4 \pi A^{3}}{2 b^{5 / 2}} \int_{0}^{\alpha} e^{-z} z^{3 / 2} d z=\frac{b e^{2}=z}{2 b c d c=d z} \begin{array}{l}
d c=\frac{4 \pi A^{3}}{2 b \sqrt{z}} \\
=\frac{A \pi A^{3}}{2 b^{5 / 2}} \frac{3}{2} \times \frac{1}{2} \times \sqrt{\pi}=\frac{3 \pi^{3 / 2}}{2}\left(\frac{m}{2 \pi k_{B} T}\right)^{3 / 2}\left(\frac{2 k_{B} T}{m}\right)^{5 / 2} \\
=\frac{3 k_{B} T}{m}
\end{array} \quad \therefore C_{\text {rims }}^{2}=\sqrt{\frac{3 k_{B} T}{m}}
\end{aligned}
$$

Most probable velocity $\quad c_{m}$ is $\left.\frac{d F_{c}}{d c}\right|_{c=c_{m}}=0$.

$$
\begin{aligned}
& \left.\therefore \frac{d}{d c}\left\{4 \pi A c^{3} e^{-b c^{2}}\right\}\right|_{c=c_{m}}=0 \\
& \text { or } \frac{d}{d c}\left\{c^{2} e^{-b c^{2}}\right\}_{c=c_{m}}=0 \\
& \text { or }\left\{2 c e^{-b c^{2}}-e^{2} 2 b c e^{-b c^{2}}\right\}_{c=c_{m}}=0 \\
& \text { or }\left\{2 c e^{-b e^{2}}\left(1-b c^{2}\right)\right\}_{c=c_{m}}=0
\end{aligned}
$$

This can be true if $c \rightarrow \infty$ (unphysical) or $\left\{1-b c^{2}\right\} \quad c=c_{m}=0$

$$
\therefore b C_{m}^{2}=1 \quad \text { or } \quad C_{m}=\frac{1}{\sqrt{b}}=\sqrt{\frac{2 k_{B} T}{m}}
$$

or $C_{m}=\sqrt{\frac{2 K_{B} T}{m}}$ Note $\left.\left.C_{\text {rms }}\right\rangle\langle c\rangle\right\rangle C_{m}$

Corollary

Also, no. of molecules colliding per unit area per unit time

$$
\begin{aligned}
& d u=\frac{1}{4} n \bar{c}=\frac{1}{4} n \sqrt{\frac{8 k_{B} T}{m \pi}}=\frac{1}{4} \frac{p}{K_{B} T} \sqrt{\frac{8 K_{B} T}{m \pi}} \quad\left(\text { as } P=n k_{B} T\right) \\
& d u=\frac{p}{\sqrt{2 m \pi K_{B} T}}
\end{aligned}
$$

CW 1. The velocity distribution in two dimension is

$$
d u_{u, v}=n\left(\frac{m}{2 \pi K_{B} T}\right) e^{-\frac{m\left(u^{2}+v^{2}\right)}{2 K_{B} T}} d u d v \text {. From this, }
$$

find the distribution of molecular speed. Using that, find $c_{m}, \bar{c}, c_{\text {rms }}^{2}$.

$$
c^{2}=u^{2}+v^{2}
$$

Take two concentric circles between velocity $c \& c+$ de, area

$$
\begin{aligned}
& \operatorname{dudv}=\pi(c+d e)^{2}-\pi e^{2}=2 \pi c d c . \\
& \therefore \quad d u_{c}=n\left(\frac{m}{2 \pi K_{B} T}\right) e^{-\frac{m e^{2}}{2 R_{B} T}} 2 \pi c d c=f_{c} d c .
\end{aligned}
$$

$$
\left.\begin{array}{l}
\left.\frac{d f_{c}}{d c}\right|_{c=c_{m}}=0 \\
\frac{d}{d c}\left(c e^{2}-2 K_{B} T\right.
\end{array}\right)=0
$$

or $1-c_{m}^{2} \frac{m}{k_{B} T}=0$ or $c_{m}=\sqrt{\frac{k_{B} T}{m}}$

please also calculate $\frac{1}{n} \int_{0}^{\infty} c d u_{c} \& \frac{1}{n} \int_{0}^{\infty} e^{2} d u_{c}$.
convince yourself that $c_{r m s}=\sqrt{\frac{2 K_{B} T}{m}}$ and $\bar{c}=\sqrt{\frac{\pi K_{B} T}{2 m}}$.
2. Using Maxwell velocity distribution, calculate the probability that the velocity of O_{2} molecule lies between $100 \mathrm{~m} / \mathrm{s}$ \& $101 \mathrm{~m} / \mathrm{s}$ at $-73^{\circ} \mathrm{C}$.

$$
\begin{align*}
& m / s \text { at }-73^{\circ} c . \tag{1}\\
& d d_{c}=4 \pi N\left(\frac{m}{2 \pi K_{B} T}\right)^{3 / 2} e^{-\frac{m c^{2}}{2 K_{B} T}} e^{2} d c .
\end{align*}
$$

\therefore Probability $P=\frac{d N_{c}}{N}=4 \pi\left(\frac{m}{2 \pi k_{B} T}\right)^{\frac{3}{2}} e^{-m c^{2} / 2 k_{B} T} c^{2} d c$.
Now $m=\frac{M}{N}=\frac{32 \mathrm{gm}}{6.023 \times 10^{23}}=5.31 \times 10^{-26} \mathrm{~kg}$.

$$
\begin{aligned}
T & =-73^{0} \mathrm{c}=200 \mathrm{~K}, \quad c=100 \mathrm{~m} / \mathrm{s}, \quad d c=101-100=1 \mathrm{~m} / \mathrm{s} . \\
\therefore \quad P & =4 \pi\left[\frac{5.31 \times 10^{-26}}{2 \pi \times 1.38 \times 10^{-23} \times 200}\right]^{3 / 2} \times \exp \left[-\frac{5.31 \times 10^{-26} \times 10^{4}}{2 \times 1.38 \times 10^{-23} \times 200}\right] \times 10^{4} \times 1 \\
& =4 \pi \times 5.36 \times 10^{-9} \times 0.9 \times 10^{4}=6.06 \times 10^{-4}=0.06 \%
\end{aligned}
$$

3. Compute the fraction of molecules of a gas possessing speeds within 1% of the most probable speed.

$$
c_{m}=\sqrt{\frac{2 K_{B} T}{m}}
$$

Fraction = probability P in equation (1) above. with $c=c_{m}$

$$
P=4 \pi\left(\frac{m}{2 \pi K_{B} T}\right)^{3 / 2} e^{-\frac{m}{2 K_{B} T} \frac{2 K_{B} T}{m}} \frac{2 K_{B} T}{m} d c_{m}
$$

As c varies within 1% of $c_{m} \Rightarrow[0.99 \mathrm{~cm}, 1.01 \mathrm{~cm}]$.

$$
\begin{aligned}
\therefore d c_{m} & =(1.01-0.99) c_{m}=0.02 \times \sqrt{\frac{2 K_{B} T}{m}} \\
\therefore P & =\frac{4}{\pi}\left(\frac{m}{2 K_{B} T}\right)^{3 / 2} e^{-1} \frac{2 K_{B} T}{20} \sqrt{\frac{2 K_{B} T}{m}} \times 0.02 \\
& =0.016=1.6 \% .
\end{aligned}
$$

HM.

1. At what value of speed C will the Maxwells distribution F_{e} yield same magnitude for a mixture of hydrogen \& helium gases at $27^{\circ} \mathrm{C}$?
2. Find $\left\langle e^{-1}\right\rangle$ using F_{C}.
3. Molecular mass of an ideal gas of O_{2} is 32. Calculate $C_{m}, \bar{C}, C_{r m s}$ of the gas at $27^{\circ} \mathrm{C}$. (Given $R=8.3 \mathrm{~J} /{ }^{\circ} \mathrm{c} / \mathrm{mol}$)
4. Convince yourself that $\frac{R T}{M}=\frac{P}{\rho}$. Using that, calculate $C_{m}, \bar{c}, C_{r m s}$ of the molecules of gas at densily $1.293 \times 10^{-3} \mathrm{gm} / \mathrm{ce}$ at 76 cm of Hg pressure.
5. The quantity $(c-\bar{c})^{2}=c^{2}-2 c \bar{c}+\bar{c}^{2}$ is squared deviation of atomic speed from average speed. Calculate the average value of this using Maxwell distribution \& obtain the rms deviation.
Maxwell's distribution in reduced format

$$
d N_{C}=4 \pi N\left(\frac{m}{2 \pi K_{B} T}\right)^{3 / 2} e^{-m c^{2} / 2 K_{B} T} c^{2} d c
$$

with respect to $C_{m}=\sqrt{\frac{2 k_{B} T}{m}}$, nondimensionalized $U=\frac{C}{C_{m}}$
Substitute $C=\sqrt{\frac{2 K_{B} T}{m}} U$,

$$
\begin{aligned}
& \text { Substitute } c=\sqrt{\frac{2 K_{B} T}{m}} U, \\
& d N_{C}=4 \pi N\left(\frac{m}{2 \pi K_{B} T}\right)^{3 / 2} \frac{2 K_{B} T}{m} u^{2} \sqrt{\frac{2 K_{B} T}{m}} d u e^{-\frac{m}{2 K_{B} T} \frac{2 K_{B} T}{m} U^{2}} \\
& d N_{v}=\frac{4 N}{\sqrt{\pi}} u^{2} e^{-U^{2}} d U .
\end{aligned}
$$

This distribution is independent of temperature.

Energy distribution of the gaseous atoms
What we are after is to find the no. of atoms having K.E. between $E \& E+d E$. As they don't have PoE.

$$
\begin{aligned}
E=\frac{1}{2} m c^{2} \quad \text { or } \quad d E & =m c d c . \\
\text { or } \quad d c & =\frac{d E}{m \sqrt{\frac{2 E}{m}}}=\frac{d E}{\sqrt{2 m E}} .
\end{aligned}
$$

From Maxwell's velocity distribution, we have

$$
\begin{aligned}
d u_{c} & =4 \pi n c^{2}\left(\frac{m}{2 \pi k_{B} T}\right)^{3 / 2} e^{-m c^{2} / 2 R_{B} T} d c . \\
\therefore d u_{E} & =4 \pi n \frac{2 E}{m}\left(\frac{m}{2 \pi K_{B} T}\right)^{3 / 2} e^{-E / K_{B} T} \frac{d E}{\sqrt{2 m E}} \\
d u_{E} & =2 n \sqrt{\frac{E}{\pi}}\left(k_{B} T\right)^{-3 / 2} e^{-E / K_{B} T} d E
\end{aligned}
$$

(remember if V is cancelled $d N_{E} \sim N$)
Fraction of atoms $\frac{d U_{E}}{n}$ or $\frac{d N_{E}}{N}=2\left(K_{B} T\right)^{-3 / 2} \sqrt{E} e^{-E / K_{B} T} d E=f_{E} d E$

$$
F_{E}=\frac{2}{\sqrt{\pi}}\left(K_{B} T\right)^{-3 / 2} \sqrt{E} e^{-E / K_{B} T}
$$

at $E=E_{m}, \frac{d f_{E}}{d E}=0$

co $\frac{1}{2 \sqrt{E_{m}}} e^{-E_{m} / K_{B} T}-\frac{\sqrt{E_{m}}}{k_{B} T} e^{-E_{m} / K_{B} T}=0$.

$$
\therefore \quad \frac{1}{2 \sqrt{E_{m}}}=\frac{\sqrt{E_{m}}}{K B T} \quad \text { or } \quad E_{m}=\frac{K_{B} T}{2} .
$$

Compare result with $C_{m}=\sqrt{\frac{2 K_{B} T}{m}}$. Notices that

$$
E_{m} \neq \frac{1}{2} m c_{m}^{2}=\frac{1}{2} m \frac{2 K_{B} T}{m}=K_{B} T
$$

Momentum distribution of the gaseous atoms
No. of molecules in a range of momentum p to $p+d p$.

$$
p=m e \quad \& \quad d p=m d e
$$

Again, start from Maxwell's distribution

$$
\begin{aligned}
\text { Again, start from } & =4 \pi N\left(\frac{m}{2 \pi K_{B} T}\right)^{3 / 2} e^{2} e^{-\frac{m e^{2}}{2 K_{B} T}} d c \\
\therefore d N_{p} & =4 \pi N\left(\frac{m}{2 \pi K_{B} T}\right)^{3 / 2} \frac{p^{2}}{m^{2}} e^{-p^{2} / 2 K_{B} T m} \frac{d p}{m} \\
& =N \sqrt{\frac{2}{\pi}}\left(m K_{B} T\right)^{-3 / 2} p^{2} e^{-p^{2} / 2 m K_{B} T} d p=F_{p} d p .
\end{aligned}
$$

at $P=P_{m}$ (most probable momentum), maximum no. of molecules lie $\left.\quad \frac{d F_{p}}{d p}\right|_{p=p_{m}}=0$. or $\frac{d}{d p}\left(p^{2} e^{-p^{2} / 2 m k_{B} T}\right)_{p=p_{m}}=0$
co $\quad \frac{d}{d p}\left(p^{2} e^{-b p^{2}}\right)_{p=p_{m}}=0$ put $b=\frac{1}{2 m k_{B} T}$
or $\left(2 p e^{-b p^{2}}-p^{2} \cdot 2 b p e^{-b p^{2}}\right){ }_{p=p_{m}}=0$
c $\left[2 p e^{-b p^{2}}\left(1-b p^{2}\right)\right]_{p=p_{m}}=0 \Rightarrow p_{m}=\frac{1}{\sqrt{b}}=\sqrt{2 m k_{B} T}$
Again, $C_{m}=\sqrt{\frac{2 K_{B} T}{m}}$
So $m c_{m}=\sqrt{2 m k_{B} T}=P_{m}$.
So most of the atoms have velocity C_{m} are also Laving the momentum $m c_{m}$, but most of them do not have $\frac{1}{2} m e_{m}^{2}$ energy, rather most of the atoms lave energy half of that.
If P.E. included in gravitational field $\quad d N_{C}=4 \pi N\left(\frac{m}{2 \pi k_{B} T}\right)^{3 / 2}$ Maxwell-Boltzmann distribution.

$$
x e^{-\left(m g h+\frac{1}{2} m c^{2}\right) / k_{B} T} e^{2} d c
$$

Degrees of freedom
1D motion $\rightarrow 1$ d.o.s.
2D (unconstrained) motion $\rightarrow 2$ d. of
3D (unconstrained) motion $\rightarrow 3$ d.o.f.
constraint reduce no. of independent variables necessary to designate the configuration of a dynamical system.
N particles in 3D coordinates $\left(x_{1}, y_{1}, z_{1}\right),\left(x_{2}, y_{2}, z_{2}\right) \ldots\left(x_{N}, y_{N}, z_{N}\right)$ with constraint $F_{;}\left(x_{1}, y_{1}, z_{1}, \ldots, x_{N}, y_{N}, z_{N}\right)=0, j=1,2,3, \ldots, m$.

$$
\therefore \quad k=3 N-m=d .0 . f_{0}
$$

Example (1) Monoatomic atom: $K=3$ for one atom.
(2) Diatomic eton: $k=2 \times 3-1=5$ for one molecule.
(3) Triatomic molecule: (a) linear
(b) Nonlinear

$$
\mathrm{H}_{\mathrm{H}_{2}, \mathrm{O}_{3}}^{\mathrm{O}_{2} \mathrm{~K}=3 \times 3-3=6}
$$

So trivial case, $m=3 N \rightarrow$ only one configuration. $m>3 \mathrm{~N}$ not feasible, more constraint equation than unknowns. $m<3 N$ is only feasible.
Generalized position \& velocity coordinates
If a system has N d.0.f. then we can choose a set of N elements $q_{1}, q_{2}, q_{3} \ldots q_{N}$ that correspond to configuration \& $\dot{q}_{1}, \dot{q}_{2}, \ldots \dot{q}_{N}$ which to velocity vector at that configuration. These are generalized coordinates.
Law of equipartion of energy
Energy of a dynamical system in thermal equilibrium is equally divided amongst its d.0.f. \& the value is $\frac{1}{2} k_{B} T$ for each d.o.f.

Suppose a system of free atoms has f d.o.f.
Every d.o.f. gets $\frac{1}{2} K_{B} T$ energy, then the energy per gm molecule
$\therefore \quad U=\frac{1}{2} N f K_{B} T=\frac{1}{2} R f T$

$$
\left[E K_{B}=\frac{R}{N}\right]
$$

$$
\therefore c_{V}=\left(\frac{d \theta}{d T}\right)_{V}=R f / 2
$$

From $C_{p}-C_{V}=R$, we have $C_{p}=R+\frac{R_{f}}{2}$.

$$
\therefore \frac{C_{P}}{C_{V}}=\frac{R+R f / 2}{R f / 2}=\frac{2}{f}+1 \quad \text { or } \quad \gamma=1+\frac{2}{f}
$$

for monoatomic gas, $k=3, \gamma=1+\frac{2}{3}=1.66$.
for diatomic gas, $k=5, \gamma=1+\frac{2}{5}=1.4$
For triatomic linear gas, $k=7, \gamma=1+\frac{2}{7}=1.28$
for triatomic not colinear gas, $K=6, \gamma=1+\frac{2}{6}=1.33$.
Dulong \& Petit's law
1819 Experimental investigation \Rightarrow product of atomic weight \& specific heat of almost all solid substances are nearly equal to 6 calories.

Consider 1 mole of a solid with each atom/molecule Lave 3 translational d.o.f. \& 2 rotational d.o.f. \& 3 vibrational d.o.f. (vibration about mean equilibrium configuration). Rotation isn't allowed in crystal, as they're rigidly fixed.
\therefore Number of d.o.f. of 1 mole solid is 6 N .
Every d.o.f. gets $\frac{1}{2} k_{B} T$ energy from Equipartition theorem.

$$
\begin{aligned}
& \therefore \text { Total energy }=U=6 N \frac{1}{2} K_{B} T=3 N K_{B} T=3 R T \\
& \therefore C_{V}=\left(\frac{d U}{d T}\right)_{V}=3 R=3 \times 1.98 \mathrm{cal} \simeq 6 \mathrm{cal} .
\end{aligned}
$$

sometimes "atomicity" is also equivalent to d.o.f, $f=\frac{2}{\gamma-1}$.
Variation of r with tuperature
High T, translation + rotation + vibration,

$$
f \text { (diatomic molecule) }=7, \gamma=1+\frac{2}{7}=1.29
$$

$$
\text { like } H_{2}>5000^{\circ} \mathrm{C} \quad C_{V}=\frac{7}{2} R
$$

Medium T, translation + rotation

$$
f(\text { diatomic molearele })=5, r=1+\frac{2}{5}=1.4 \text {. }
$$

like $H_{2} \simeq 250 \mathrm{~K}$

$$
c_{v}=\frac{5}{2} R
$$

low T, translation

$$
f(\text { diatomic molecule })=3, \quad \gamma=1+\frac{2}{3}=1.66
$$

like $\mathrm{H}_{2} \simeq 70 \mathrm{~K}$

$$
C_{V}=\frac{3}{2} R
$$

1. What is the atomicity of a gas with heat capacity ration 1.33 ? Given, $R=8.31 \mathrm{~J} / \mathrm{mol} / \mathrm{K}$. Calculate C_{p}, G_{r} values also.

$$
\begin{aligned}
& C_{p}-C_{v}=R \quad \text { or } \quad C_{v}\left(\frac{C_{p}}{C_{V}}-1\right)=R \text { or } C_{V}(\gamma-1)=R . \\
& \therefore C_{V}=\frac{R}{\gamma-1}=\frac{8.31}{1.33-1}=25.18 \mathrm{~J} / \mathrm{mol} / \mathrm{K} . \\
& C_{p}=\gamma C_{V}=33.49 \mathrm{~J} / \mathrm{moll} / \mathrm{R} .
\end{aligned}
$$

\therefore Atomicity $f=\frac{2}{\gamma-1}=\frac{2}{0.33}=6$. (not monoatomi gas).
2. Calculate (a) K.E. of translation of O_{2} molecule, (b) total K.E. and (c) total K.E. of a gram molecule at $27^{\circ} \mathrm{C}$. Given $K_{B}=1.37 \times 10^{-23} \mathrm{~J} / \mathrm{K}$ \& $N=6.02 \times 10^{23}$.

$$
O_{2}=\underset{\substack{\text { translation } \\(x, y z)}}{3 \text { rotation }(\theta, \phi), \quad f=5 .}
$$

$$
\begin{aligned}
&(x, y, z) \\
& \text { K.E. of translation }=\frac{3}{2} k_{B} T=\frac{3}{2} \times 1.37 \times 10^{-23} \times 300 \\
&=6.17 \times 10^{-21} \mathrm{~J} .
\end{aligned}
$$

(a)
(b) K.E. Calf total $=\frac{5}{2}$ KAT $=10.275 \times 10^{-21} \mathrm{~J}$
(c)

$$
\begin{aligned}
\text { of } 1 \text { gram molecule }=\frac{5}{2} K_{B} T \times N & =10.275 \times 10^{-21} \times 6.02 \times 10^{23} \\
& =6185.55 \mathrm{~J} .
\end{aligned}
$$

Scanned by CamScanner
γ for a mixture of ideal gases
At temperature T, N_{1} moles of ideal gas with f_{1} d.0.5. N_{2} moles of ideal gas witt f_{2} d.o.f. N_{3} moles of ideal gas with f_{3} d.o.f.
\ddot{N}_{N} moles of ideal 8 an with \bar{f}_{N} d.o.f.
Total internal energy $U=\frac{1}{2} K_{B} T N_{1} f_{1} N+\frac{1}{2} K_{B} T N_{2} f_{2} N+\cdots+$ $\frac{1}{2} K_{B} T N_{N} f_{N}$

$$
\therefore C_{V}=\left(\frac{d U}{d T}\right)_{V}=\frac{1}{2} K_{B} N\left(N_{1} f_{1}+N_{2} f_{2}+\cdots+N_{N} f_{N}\right)
$$

Also $C_{P}-C_{V}=\left(N_{1}+N_{2}+\cdots+N_{n}\right) K_{B} N \quad\left[R / N=K_{B}\right]$

$$
\text { a. } \begin{aligned}
c_{p} & =\left(N_{1}+N_{2}+\cdots+N_{n}\right) k_{B} N+\frac{1}{2}\left(N_{1} f_{1}+N_{2} f_{2}+\cdots+N_{N} f_{N}\right) k_{B} N \\
& =\frac{\left(2+f_{1}\right) N_{1}+\left(2+f_{2}\right) N_{2}+\cdots+\left(2+f_{N}\right) N_{N}}{2} k_{B} N \\
\therefore \gamma & =\frac{C_{p}}{c_{V}}
\end{aligned}=\frac{\left(2+f_{1}\right) N_{1}+\left(2+f_{2}\right) N_{2}+\cdots+\left(2+f_{N}\right) N_{N}}{f_{1} N_{1}+f_{2} N_{2}+\cdots+f_{N} N_{N}}
$$

Example
1 mole of monoatomic gas $(f=3)$ \& 1 mole of diatomic

$$
\begin{aligned}
& \text { gas }(f=5), \quad \gamma=\frac{\left(2+f_{1}\right) N_{1}+\left(2+f_{2}\right) N_{2}}{f_{1} N_{1}+f_{2} N_{2}}=\frac{5+7}{3+5}=1.5 \\
& 1 \leqslant \gamma \leqslant 1.67
\end{aligned}
$$

Mean five forth We calculated that K.T. gives $\sim 1 \mathrm{~km} / \mathrm{s}$ velucily for molecular movement. But we see clouds suspended in air holds together for hours. So there must be some factors that prevent the fie e escape of atoms.

Clausius showed that such discrepancy goes away if we take small \& finite volume for atoms of they change velocity R direction of motion in the proem of wllission, zigzag path (discrete)

In between two successive wllission, the traversed path \therefore free path $\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}\right)$.

$$
\text { Mean free path }=\frac{\lambda_{1}+\lambda_{2}+\lambda_{3}+\cdots+\lambda_{N}}{\text { Number of collision }}
$$

Collision probability
Suppose collision rate is P, average velocity of an atom is \bar{C} f in time t, distance covered $=\overline{c t}$ of number of collisions suffered \therefore Pt. then $\lambda_{e}=\frac{\overline{c t}}{p t}=\frac{\bar{c}}{p}$.
Before we calculate " A ", let's compute the distribution of λ, meaning probability of an atom moving a distance x without collision, say $f(x)$. This means that $f(x+d x)$ is the probability that atom traverses $x+d x$ length without collision.

If P i collission probability per unit time, then for N atoms number of collisions in time $t=\frac{1}{2} N P t .\left(\frac{1}{2}\right.$ because each collission between 2 atoms is counted twice).

Probability that after traversing x, an atom will suffer a collission within $d x$ in time $d t=p d t=p \frac{d x}{c}=\frac{d x}{\lambda}$ where $\lambda=\frac{c}{p}$ in the free path for atoms with velocily c.
\therefore As total probability $=1$, probability of no collision in distance $d x=\left(1-\frac{d x}{\lambda}\right)$.

As successive collisions are independent therefore the joint probability of no collision at $x+d x$ is $f(x) \times\left(1-\frac{d x}{a}\right)$

$$
\therefore f(x+d x)=f(x)\left(1-\frac{d x}{\lambda}\right) .
$$

Expand LHS using Taylor's theorem.

$$
\begin{aligned}
& f(x)+f^{\prime}(x) d x+\frac{1}{2} f^{\prime \prime}(x)(d x)+\cdots=f(x)\left(1-\frac{d x}{\lambda}\right) \quad\left[\lim _{d x \rightarrow 0}\right] \\
& \text { or } f^{\prime}(x)=-f(x) / \lambda . \quad \text { or } \quad \text { 虽 } \frac{f^{\prime}(x)}{f(x)}=-\frac{1}{\lambda} .
\end{aligned}
$$

Integrating, $\ln f(x)=-\frac{x}{\lambda}+\ln c \Rightarrow \quad f(x)=c e^{-\frac{x}{\lambda}}$. note that when $x=0, f(x)=1 . \quad \therefore c=1$.
$\therefore f(x)=e^{-x / \lambda} \Rightarrow$ law of distribution of free paths

Method 2
Let, out of N atoms. N^{\prime} atoms cross x without wllision. \& after that in $d x$ distance, $d N^{\prime}$ atoms are throw out due to collision. Then $d N^{\prime} \alpha N^{\prime}$

$$
\alpha d x
$$ or $\quad d N^{\prime}=-P N^{\prime} d x$

(-ive for decrease)
er $\frac{d N^{\prime}}{N^{\prime}}=-P d x$
Integrating $\ln N^{\prime}=-P x+\ln c$
or $N^{\prime}=c e^{-P x}$. Now put boundary condition at $x=0, N^{\prime}=N$.

$$
\therefore \quad C=N \quad \quad \therefore \quad N^{\prime}=N e^{-p x}
$$

thrown out molecules are $d N^{\prime}=+P N e^{-P x} d x$ (Hive number)

$$
\begin{aligned}
& \lambda=\frac{x_{1} d N_{1}^{\prime}+x_{2} d N_{2}^{\prime}+\cdots \cdot}{N}=\frac{1}{N} \int_{0}^{\infty} x d N^{\prime} \\
&=\frac{1}{N} \int_{0}^{\infty} x p N e^{-p x} d x=p \int_{0}^{\infty} e^{-p x} x d x \\
&=p \frac{1}{p^{2}} \int_{0}^{\infty} e^{-z} z d z=\frac{1}{p} r(2)=\frac{1}{p} \quad \quad \text { put } p x=z \\
& \therefore N^{\prime}=N e^{-x / \lambda} \quad \infty d x=d z
\end{aligned}
$$

This is the "survival equation".

$$
d N^{\prime}=\frac{N}{\lambda} e^{-x / \lambda} d x \quad \frac{d N^{\prime}}{d x}=\frac{N}{\lambda} e^{-x / \lambda}
$$

(a) $P \propto \frac{1}{\lambda \Rightarrow \text { collision probability is }}$ reciprocal of free path.
(b) Intensity of atomic beam α number of atoms.
Number $>\lambda$ is $e^{-1} \sim 37 \%$

$$
<\lambda \text { is } 1-37 \%=63 \%
$$

$$
\begin{aligned}
& \therefore I^{\prime}=I e^{-x / \lambda} \\
& \text { initial } \\
& \text { final intensity } \\
& \text { intensity. }
\end{aligned}
$$ intensity.

Calculation of λ
Suppose all atoms are rest but only one moves with velocity \bar{c}. Rigid spherical shape with diameter σ. It can only wllide when they touch. \& can reach distance \bar{c}, so it collides with $\pi \sigma^{2} \bar{e} n$ many atoms. This is also number of collisions influence per second.
\therefore Mean free path $\lambda=\frac{\bar{c}}{\pi \sigma^{2} \bar{c} u}=\frac{1}{n \pi} \sigma^{2}$
This is approximate \& Clausius did the first correction followed by Maxwell - Tart.
Clausius correction Introduction of relative velocity. as all atoms are in motion.

Consider A \& B atom moves with velocity $C_{1} \& c_{2} \&$ angle θ. Making odom B observer (meaning applying equal \& opposite velocity C_{2} to B), B is in rest \& relative to that A moves with relative velocity

$$
R=\sqrt{c_{1}^{2}+c_{2}^{2}-2 c_{1} c_{2} \cos \theta}
$$

Now we howe to find mean relative velocity. of atom A with respect to all others. If $d N_{\theta, \phi}$ is the number of atoms moving between $\theta \& \theta+d \theta, \phi \& \phi+d \phi$ then

$$
d N_{\theta, \phi}=\frac{N}{4 \pi R^{2}} R^{2} \sin \theta d \theta d \phi=\frac{N \sin \theta d \theta d \phi}{4 \pi}
$$

and $\bar{R}=\frac{\int R d u_{\theta, \phi}}{\int d u_{\theta, \phi}}=\frac{\int_{\theta=0}^{\pi} \int_{\phi=0}^{2 \pi} \sqrt{q_{1}^{2}+c_{2}^{2}-2 c_{1} c_{2} \cos \theta} \frac{N \sin \theta d \theta \phi \phi}{4 \pi}}{\int^{\pi} \int^{2 \pi} N \sin \theta d \theta d \phi}$

$$
\phi \quad \frac{\theta=0 \quad \phi=0}{\int_{\theta=0}^{\pi} \int_{\rho=0}^{2 \pi} \frac{N \sin \theta d \theta d \phi}{4 \pi}}
$$

$$
=\frac{N}{4 \pi} \frac{1}{\pi} \int_{\theta=0}^{\pi} \sqrt{q_{1}^{2}+c_{2}^{2}-2 c_{1} c_{2} \cos \theta} \sin \theta d \theta / \frac{N}{4 \pi} A \pi /
$$

substitute $a^{2}+c_{2}^{2}-2 c_{1} c_{2} \cos \theta=z$ ur $2 c_{1} c_{2} \sin \theta d \theta=d z$

$$
\begin{aligned}
& \text { substitute } a_{1}^{2}+c_{2}^{2}-2 c_{1} c_{2} \cos \theta=z \quad \frac{1}{2 c_{1} c_{2}} \int_{\left(c_{1}-c_{2}\right)^{2}}^{\left(c_{1}+c_{2}\right)^{2}} \sqrt{z} d z=\frac{1}{2 c_{1} c_{2}}\left[\frac{z^{3 / 2}}{3 / 2}\right]_{\left(c_{2}-c_{2}\right)^{2}}^{\left(4+c_{2}\right)^{2}} \\
& =\frac{1}{3 c_{1} c_{2}}\left[\left(c_{1}+c_{2}\right)^{3}-\left(c_{1}-c_{2}\right)^{3}\right] \\
& \therefore \bar{R}=\frac{1}{6 c_{1} c_{2}}\left[\left(c_{1}+c_{2}\right)^{3}-\left(c_{1}-c_{2}\right)^{3}\right] . \\
& \therefore \text { clausius's assumption } c_{1}=c_{2}=\bar{c}
\end{aligned}
$$

According to Clausius's assumption $G_{1}=c_{2}=\bar{C}$
$\therefore \bar{R}=\frac{1}{6 \bar{C}^{2}} 8 \bar{C}^{3}=\frac{4}{3} \bar{c}$, meaning in traveling a distance \bar{e}, number of collision by molecule A with relative velocity \bar{R} is $\pi \sigma^{2} \bar{R} u$ \& therefore $\lambda_{C l}=\frac{\bar{C}}{\pi \sigma^{2} n \bar{R}}=\frac{3}{4} \frac{1}{n \pi \sigma^{2}}$.
Maxwell's correction Clausius took $c_{1}=c_{2}=\cdots=c_{N}=\bar{C}$ but they're Maxwellian distributed in reality!
Maxwell corrected by considering both $c_{1}>c_{2}$ \& $c_{1}<c_{2}$ case with $d N_{c_{2}}=4 \pi N\left(\frac{m}{2 \pi K_{B} T}\right)^{3 / 2} e^{-m c_{2}^{2} / 2 K_{B} T} c_{2}^{2} d c_{2}$
to obtain $\bar{R}=\sqrt{2} \bar{C}$ (see AB Gupta $\$ 2.21 .2$ for derivation) Scanned by CamScanner

$$
\therefore \quad \lambda_{\text {Maxwell }}=\frac{\bar{c}}{\sqrt{2 \pi \sigma^{2} n} \bar{c}}=\frac{1}{\sqrt{2 \pi \sigma^{2} n}}
$$

Pressure of a gas using mean free path

One again, we want to compute atoms within volume d N at distance r with inclination θ to a surface $d A$ at origin that reach $d A$ after collision with other atoms, using Survival equation.
Number of molecules between $e \& f+d c$ in volume $d v$ is $d n_{c} d V$.
If λ is mean free path of the gas atoms then number of collision suffered by one atom per unit time $=\frac{c}{\lambda}$.
As $1 \rightarrow 2 \& 2 \rightarrow 1$ collision is counted twice, so the number of collisions suffered by $d n_{c} d V$ number of atoms in unit time i $\frac{1}{2} \frac{C}{\lambda} d u_{e} d \boldsymbol{v}$. But each collision results to two new paths along which atoms travel.
\therefore The number of new paths or number of atom emanating from $d V$ per unit time $=\frac{1}{2} \frac{c}{\lambda} d n_{c} d V \times 2$ \& n that are pointed towards the area $d A$ is the solid angle subtended by $d A$ at $d V=\frac{d A \cos \theta / r^{2}}{4 \pi}$ ($4 \pi=$ all molecules contained)
\therefore That exit from $d V$ pointing to $d A$, that number is ert

$$
N_{0}=\frac{c}{\lambda} d u_{e} d v \frac{d A \cos \theta}{4 \pi r^{2}} \quad \text { (per unit time). }
$$

In No, only those atoms with $\lambda \geqslant r$ can reach $d A$, which is

$$
N=N_{0} e^{-\gamma / \lambda}=\frac{c}{\lambda} d n_{c} d V \frac{d A \cos \theta}{4 \pi r^{2}} e^{-\gamma / \lambda}
$$

Scanned by CamScanner

$$
\begin{aligned}
& =\frac{c d \mu_{c} d A \cos \theta \gamma^{2} \sin \theta d \theta d \phi d \gamma e^{-\gamma / \lambda}}{\lambda 4 \pi \gamma^{2}} \\
& =\frac{d A}{\theta} \times \frac{c d \mu_{c} \sin \theta \cos \theta d \theta d \phi}{4 \pi} \times \frac{e^{-\gamma / \lambda}}{\lambda} d \gamma \\
& \therefore \text { No. of atoms striking } d A \circ^{\circ}=\frac{d A}{4 \pi} \int_{c=0}^{\infty} c d \mu_{c} \int_{\theta=0}^{\pi / 2} \sin \theta \cos \theta d \theta \int_{\left.\phi=r^{2} \sin \theta d \theta d \phi d r\right)}^{\infty} d \phi x \\
& =\frac{d A}{4 \pi} n \bar{c} \frac{1}{2} 2 \pi \times 1=\frac{d A}{4} n \bar{c} e^{-\gamma / \lambda} / \lambda d r
\end{aligned}
$$

So per unit area per unit time, number of atoms striking is $\frac{n \bar{e}}{4}$.
wlliding
Again, we know one atom suffers momentum change $=2 m c \cos \theta$
So chaye of momentum for all atom are

$$
\begin{aligned}
& \text { So chaye of momentum for all atom } \\
& \frac{d A}{4 \pi} \int_{c=0}^{\infty} 2 m c^{2} d u_{c} \int_{\theta=0}^{\pi / 2} \sin \theta \cos ^{2} \theta d \theta \int_{\phi=0}^{2 \pi} d \phi \int_{r=0}^{\infty} e^{-r / \lambda} d(\gamma / \lambda) \\
& d F=\frac{m d A}{2 \pi} \overline{n c}_{r m s}^{2} \frac{1}{3} 2 \pi=\frac{1}{3} m n \bar{c}_{r m s}^{2} d A \quad\left[\bar{c}_{r m s}^{2}=\frac{1}{n} \int_{c=0}^{A} c^{2} d u_{c}\right] \\
& \therefore \quad p=\frac{d F}{d A}=\frac{1}{3} m n \bar{c}_{r m s}^{2}
\end{aligned}
$$

Mean free path of a mixture of a gas
If we consider two different molecule with diameter σ_{1}, σ_{2} then, r_{1} diameter molecule will collide with all molecule that are $\frac{\sigma_{1}+\sigma_{2}}{2}$ distance apart from σ_{1} molecule. Hence λ will be $1 / n \pi \sigma_{a}^{2}$ where $\sigma_{a}=\frac{\sigma_{1}+\sigma_{2}}{2} \& m=$ number of molecules per unit volume of σ_{2} type. But σ_{2} molecules are not in rest then if σ_{1} type moves with $\bar{c}_{1} \& \sigma_{2}$ type moves with \bar{c}_{2} \& if the molecules of σ_{2} move perpendicular to σ_{1} then
relative velocily $R=\sqrt{\bar{G}_{1}^{2}+\bar{c}_{2}^{2}}$ \& therefore $\frac{R}{\overline{c_{1}}}=\frac{\sqrt{\bar{c}_{1}}+\bar{c}_{2}^{2}}{\bar{a}}$
So λ_{1} of r_{1} type of molecules within σ_{2} type molecules are $\lambda_{1}=\frac{1}{n \pi \sigma_{a}^{2} \frac{\sqrt{G_{1}^{2}+\tau_{2}^{2}}}{\bar{a}}}$. similarly, λ_{2} of σ_{2} type of molecule within σ_{1} type molecules are $\lambda_{2}=\frac{1}{n \bar{\pi} \sigma_{a}^{2} \frac{\sqrt{\bar{द}_{1}^{2}+\tau_{2}^{2}}}{\bar{c}_{2}}}$. The perpendicular directionality assumption gives Maxwell's distribution with relative velocity $R, \&$ if we Lad assumed $\bar{C}_{1}=\bar{C}_{2}$ \& then we could get back Maxwell's expression of free path. If we now consider n_{1} molecule of σ_{1} type with \bar{E}_{1} \& n_{2} molecule of σ_{2} type with \bar{c}_{2} avg. velocity then no. of impact/see by σ_{1} molecules $\Gamma_{1}=\underbrace{\sqrt{2} \bar{c}_{1} n_{1} \pi \sigma_{1}^{2}\left(=\frac{\bar{q}_{1}}{\lambda_{11}}\right)}_{\sigma_{1} \text { with } \sigma_{1}}+\underbrace{\left(\bar{\sigma}_{1}\right.}_{\sigma_{2} \pi \sigma_{\alpha}^{2} \bar{q}_{1} \frac{\sqrt{\bar{c}_{1}^{2}+\bar{c}_{2}^{2}}}{\bar{c}_{1}}}=\frac{\bar{q}_{2}}{\lambda_{12}})$
\therefore Mean free path of σ_{1} type molecules in the gas mixture

$$
\begin{aligned}
& \lambda_{1}=\frac{\bar{c}_{1}}{\Gamma_{1}}=\frac{\overline{c_{1}}}{\sqrt{2} \pi n_{1} \bar{c}_{1} \sigma_{1}^{2}+\pi \sigma_{Q}^{2} n_{2} \sqrt{\bar{c}_{1}^{2}+\bar{c}_{2}^{2}}} \text { \& Mean free path for the other } \\
& a_{2}=\frac{\bar{c}_{2}}{\Gamma_{2}}=\frac{\bar{c}_{2}}{\sqrt{2} \pi n_{2} \bar{c}_{2} \sigma_{2}^{2}+\pi \sigma_{a}^{2} n_{1} \sqrt{\bar{c}_{1}^{2}+\bar{c}_{2}^{2}}}
\end{aligned}
$$

HW 1. Estimate the size of a He atom, assuming its mean free path $\therefore 28.5 \times 10^{-6} \mathrm{~cm}$ at N.T.P. \& density is $0.178 \mathrm{gm} /$ litre at N.T.P. \& the mas of He atom is $6 \times 10^{-24} \mathrm{gm}$.
2. The diameter of a gas molecule $i \quad 3 \times 10^{-8} \mathrm{~cm}$. Calculate the mean free path at N.T.P. Given $K_{B}=1.38 \times 10^{-16} \operatorname{ergs} /{ }^{\circ} \mathrm{e}$.
3. Find the diameter of a molecule of Benzene if its mean-free path is $2.2 \times 10^{-8} \mathrm{~m}$ \& the number of Benzene molecules/unt volume is 2.79×10^{25} molecules $/ \mathrm{m}^{3}$.
(Nonequilibrium) Transport Phenomena in Gases
(i) Viscosity: velocity varies from layer to layer. \& momentum is transferred from layer to layer leading to kinetic interpretation of viscosity in gases. In 1860, Maxwell interpreted that if lino layer have relative velocity, viscous force al acts along the surface of contact retarding the forster moving layer \& making the slower moving layer to move faster. Retarding force is proportional to area of contact \& velocity gradient.

$$
\begin{aligned}
& F \propto A \\
& \propto \frac{d v}{d z}
\end{aligned} \quad \text { or } F=\eta A \frac{d v}{d z} \text { or } \begin{aligned}
& \sigma=\eta \dot{\gamma} \longrightarrow \text { strain rate } \\
& \begin{array}{l}
\frac{1}{2} \\
\text { stress }
\end{array} \\
& \begin{array}{l}
\text { conf.". } \\
\text { of viscosity }
\end{array}
\end{aligned} \begin{aligned}
& \text { Newton's law of } \\
& \text { viscosity }
\end{aligned}
$$

(ii) Thermal conductivity: Taken a solid rod \& heated in one end, after sufficiently long time when measured temperature at different distances then amount of heat conducted (rate) ${ }^{\text {is }}$ proportional to temperature gradient, area of face of slab.

$$
\begin{aligned}
& Q \propto A \quad \sim Q=k A \frac{d T}{d z} \\
& \alpha \frac{d T}{d z} \\
& \text { Fourier's low of } \\
& \text { heat conduction }
\end{aligned}
$$

(ii) Diffusion: Whenever there is difference in concentration, mass transfer results to an equilibrium distribution of concentration. In nonodisperse system, diffusion to concentration gradient is called self-diffusion $\&$ it two gases diffuse into each other, called inter-diffusion. Number of molecules crossing is proportional to

$$
\begin{aligned}
& N \propto \frac{d u}{d z} \quad \text { or } N=D A \frac{d u}{d z} \\
& \propto A
\end{aligned}
$$

Pick's law of diffusion

General method for obtaining coefficient of viscosity \& conduction

In a reference frame, consider an elementary volume $d V$ at coordinate (r, θ). The layer that contains $d V$ is at a vertical height $r \cos \theta$ from XY plane at origin 0. If the physical entily has a value se (energy, momentum te) on the XY plane at origin, then the value at the upper layer is $r e+r \cos \theta \frac{d \mathscr{H}}{d z}$. For an identical layer beneath at same distance, the value is se-roo $\frac{d r l}{d z}$

The number of molecules within $c \& c+d c$ in $d V$ i $d n_{c} d V$. If A is the mean free path, then the number of collison suffered in mit time is $\frac{c}{\lambda} \frac{1}{2} d n_{c} d V$. Factor $1 / 2$ is blase collision betwen two molecules are identical \& counted trice. But each collision results in 2 paths. So the number of molecule coming out of $d v$ in all possible direction is $2 \times \frac{1}{2} \frac{c}{\lambda} d n_{c} d V$.

Number of molecules which are headed towards area dA at origin is $\frac{d A \cos \theta}{4 \pi r^{2}} \frac{c}{\lambda} d n_{c} d V$. Due to collision some of then cannot reach $d A$ \& the number that reaches $d A$ in int time is

$$
\frac{d A \cos \theta}{4 \pi r^{2}} \frac{c}{\lambda} d n_{c} d V e^{-r / \lambda}=\frac{d A \cos \theta}{4 \pi r^{2}} \frac{c}{\lambda} d n_{c}^{r^{2} \sin \theta d \theta d \phi d r e^{-\gamma / \lambda}}
$$

If the molecule carry the physical entity characteristic of the layer when they last suffered collision then the transport of physical entity downwards through area $d A$ per unit time :

$$
L \downarrow=\frac{d A}{4 \pi} \int_{c=0}^{\infty} \int_{r=0}^{\infty} \int_{\theta=0}^{\pi / 2} \int_{\phi=0}^{2 \pi} c d u_{c} \sin \theta \cos \theta d \theta d \phi e^{-r / \lambda} \frac{d r}{\lambda}\left(A+r \cos \theta \frac{d \theta}{d z}\right)
$$

Considering an identical volume below the reference frame, the fransport of physical entity upwards $:$

$$
L \uparrow=\frac{d A}{4 \pi} \int_{c=0}^{\infty} \int_{r=0}^{\infty} \int_{\theta=0}^{\pi / 2} \int_{\phi=0}^{2 \pi} c d u_{c} \sin \theta \cos \theta d \theta d \phi e^{-r / \lambda} \frac{d r}{\lambda}\left(g \theta-r \cos \theta \frac{d \theta}{d z}\right)
$$

\therefore The net transfer of physical entity to the reference frame via area $d A$ in wit time is

$$
\begin{aligned}
& \text { area } d A \text { in unit time i } \\
& \Delta L=L \downarrow-L \uparrow=\frac{2 d A}{4 \pi} \frac{d \xi e}{d t} \int_{0}^{\infty} c d u_{c} \int_{0}^{\pi / 2} \cos ^{2} \theta \sin \theta d \theta \int_{0}^{2 \pi} d \phi \int_{0}^{\infty} \frac{r}{\lambda} e^{-\alpha / \lambda} d r \\
&=d A \frac{d r t}{d z} \frac{1}{3} \lambda \int_{0}^{\infty} c d u_{c}=\frac{1}{3} n \bar{c} \lambda d A \frac{d \mu}{d z}
\end{aligned}
$$

(i) Viscosity: $\mathscr{H}=m v=$ momentum, $\Delta L=F=$ force

$$
\begin{aligned}
\therefore F & =\frac{1}{3} n \bar{c} \lambda d A m \frac{d v}{d z}=\eta d A \frac{d v}{d z} \\
\therefore \eta & =\frac{1}{3} m n \bar{c} \lambda=\frac{1}{3} \rho \bar{c} \lambda
\end{aligned}
$$

(ii) Thermal conductivity: $\mathcal{H e}=E=$ thermal energy, $\Delta L=Q=$ heat

$$
\begin{aligned}
& \therefore Q=\frac{1}{3} n \bar{c} \lambda d A \frac{d E}{d z}=\frac{1}{3} n \bar{c} \lambda d A \frac{d E}{d T} \frac{d T}{d z}=K d A \frac{d T}{d z} \\
& \therefore \quad K=\frac{1}{3} n \bar{c} \lambda \frac{d E}{d T}
\end{aligned}
$$

If $c_{v}=$ specific heat of molecules, $E=m c_{v} T$ io $\frac{d E}{d T}=m c_{v}$

$$
\therefore k=\frac{1}{3} n \bar{c} \lambda m c_{v}=\eta c_{v}
$$

Variation of $\mathrm{K} / \eta_{\mathrm{c}}$ with. the atomicity of molecules
$k / \eta c_{v}=1$ was not matching with experiments, because many factors are omitted to reach the expression. In general $k / \eta c_{v}=\epsilon=[1,2.57]$

For a polyatomic molecule, the energy transfer is not only translational but also internal energy (rotational, vibrational ete) In rigorous calculation, Chapman found total energy transferred per unit time is $\frac{1}{3} n \bar{c} \lambda d A\left(\frac{5}{2} \frac{d E_{T}}{d z}+\frac{d E_{R}}{d z}\right) \quad E_{T}=$ Translational energy $\&$ $E_{R}=$ Rotational energy.

$$
\begin{gather*}
\therefore \quad k d A \frac{d T}{d z}=\frac{1}{3} n \bar{c} \lambda d A \frac{d T}{d z}\left\{\frac{5}{2} \frac{d E_{T}}{d T}+\frac{d E_{R}}{d T}\right\} \\
\text { or } K=\frac{\eta}{m}\left(\frac{5}{2} \frac{d E_{T}}{d T}+\frac{d E_{R}}{d T}\right)-\text { (1) } \tag{1}
\end{gather*}
$$

From the principle of equipartition of energy, total energy associated with 1 gm molecule of gas i $\frac{3+\beta}{2} R T, \beta=\# \circ f$ d.o.f. for rotational motion, \therefore Molar specific heat $C_{V}=\frac{d E}{d T}=\frac{3+\beta}{2} R$. Using $C_{p}-C_{v}=R, C_{p}=\frac{5+\beta}{2} R$

$$
\begin{equation*}
\text { co } \gamma=C_{p / c_{v}}=\frac{5+\beta}{3+\beta}=1+\frac{2}{3+\beta} \tag{2}
\end{equation*}
$$

But $E_{T}=\frac{3}{2} K_{B} T, E_{R}=\beta / 2 K_{B} T \quad$ or $\frac{d E_{T}}{d T}=\frac{3}{2} K_{B}, \frac{d E_{R}}{d \tau}=\frac{\beta}{2} K_{B}$ putting in (i), $K=\frac{\eta}{m}\left(\frac{15 K_{B}}{4}+\frac{\beta K_{B}}{2}\right)$

But $C_{v}=\frac{3+\beta}{2} \frac{K_{B}}{m}$ (molecular specific heat)

$$
\begin{aligned}
\text { But } C_{v} & =\frac{3+\beta}{2} \frac{k_{B}}{m} \quad \text { (molecular } \\
& =\frac{k_{B}}{m(\gamma-1)} \quad \text { using (2) } \quad a \quad k_{B}=m(\gamma-1) C_{v} \\
\therefore K & =\frac{\eta}{m} m(\gamma-1) C_{v}\left(\frac{15+2 \beta}{4}\right)=\eta C_{V}(\gamma-1)\left(\frac{15}{4}+\frac{\beta}{2}\right) \\
& =\eta C_{V}(\gamma-1)\left[\frac{15}{4}+\frac{1}{\gamma-1}-\frac{3}{2}\right]=\eta C_{V}(\gamma-1)\left(\frac{9}{4}+\frac{1}{\gamma-1}\right) \\
& =\eta C_{V}\left(\frac{9 \gamma-5}{4}\right) . \quad \delta=\frac{9 \gamma-5}{4}
\end{aligned}
$$

monoatomic gas $\gamma=1.66, \epsilon=2.5$
diatomic gas $\gamma=1.4, \quad \in=1.9$
Variation of η with temperature \& pressure

$$
\eta=\frac{1}{3} m n \bar{c} \lambda=\frac{1}{3} m \times \bar{c} \frac{1}{\sqrt{2 \pi c^{2}} \nsim}=\frac{1}{3} \frac{m \bar{c}}{\sqrt{2 \pi \sigma^{2}}}
$$

η is independent of concentration, that Maxwell found at moderate pressure. At very high pressure, η increases f at low pressine, η decreases with pressure. At very high pressure, mean free path of molecules are comparable to the molecular dimension. Hence $\eta \propto p$ an $\lambda=$ content At low pressure, mean frecpath is comparable to the dimension of the container
\& again is constant. So reducing pressure n decreases \& here η. as $\bar{c}=\sqrt{\frac{8 K_{B} T}{m \pi}}$, so $\eta \propto \sqrt{T}$ but in reality η varies more rapidly. This is because in K.T. molecular interaction is not taken care of. The molecular force field in K.T. is zero but in realily increase in tumperature impinger the molecules to penetrate into each other I thus effective size of molecule decreases or increase in η. Sutherland found that $\eta=\frac{A \sqrt{T}}{1+b / T}$ holds for hydrogen, helium, argon etc.
General Method for obtaining Diffusivity

If there is a concentration gradient $\frac{d n}{d z}$ along z-direction, then the number of molecules that flows through $d A$ per unit time is $N=D d A \frac{d u}{d z}$ Let the concentration in $X Y$ plane in n concentration gradient increases in z direction,

No. of molecules within $e \& c+d c$ contained at $d V$ located at (γ, θ) i $4 \pi A^{3} e^{-b c^{2}} e^{2} d c\left(n+r \cos \theta \frac{d u}{d z}\right) d v, \quad A=\sqrt{\frac{m}{2 \pi k_{B} T}}, b=\frac{m}{2 k_{B} T}$
Due to collision, number of new paths emanating in unit time is $2 \times \frac{1}{2} \frac{c}{\lambda}\left(n+r \cos \theta \frac{d n}{d z}\right) 4 \pi A^{3} e^{-b c^{2}} e^{2} d c d V$ \& out of them, the number that will head towards $d A$ is

$$
\begin{aligned}
& \text { med that will head towards } d A \text { is } \\
& \frac{d A \cos \theta}{4 \pi \gamma^{2}} \frac{c}{\lambda}\left(n+r \cos \theta \frac{d u}{d z}\right) 4 \pi A^{3} e^{-b c^{2}} c^{2} d c d V\left(=\gamma^{2} \sin \theta d \theta d \phi\right)
\end{aligned}
$$

Taking collision into account, total member of molecules crossing area $d A$ in downward direction

$$
\begin{aligned}
& \text { using area dA in downward direction } \\
& N \downarrow=A^{3} d A \int_{c=0}^{\infty} \int_{r=0}^{\infty} \int_{\theta=0}^{\pi / 2} \int_{\varphi=0}^{2 \pi}\left(n+r \cos \theta \frac{d n}{d z}\right) \cos \theta \sin \theta d \theta d \phi d r \frac{e^{-\gamma / \lambda}}{\lambda} e^{3} e^{-b c^{2}} d c \\
& \text { Scanned by CamScanner }
\end{aligned}
$$

Scanned by CamScanner

Similarly the member of molecules crossing $d A$ in upward direction

$$
N \uparrow=A^{3} d A \int_{c=0}^{\infty} \int_{\gamma=0}^{\infty} \int_{\theta=0}^{\pi / 2} \int_{\phi=0}^{2 \pi}\left(n-r \cos \theta \frac{d \mu}{d z}\right) \sin \theta \cos \theta d \theta d \phi d \gamma \frac{e^{-r / \lambda}}{\gamma} e^{3} e^{-b c^{2}} d e
$$

\therefore Net number of molecules moving through $d A$ in unit time

$$
\begin{aligned}
\Delta N= & N \downarrow-N \uparrow= \\
& \int_{0}^{3 \pi} d A \int_{0}^{\alpha} c^{3} e^{-b c^{2}} d c \int_{0}^{\infty} r e^{-\gamma / \lambda} d \gamma / \lambda \int_{0}^{\pi / 2} \cos ^{2} \theta \sin \theta d \theta x \\
= & \frac{2 \pi}{3} \lambda d A \frac{d u}{d z} A^{3} / b^{2}=\frac{1}{3} d A \lambda \frac{d u}{d z} \sqrt{\frac{8 k T}{m \pi}}=\frac{1}{3} \lambda \bar{c} d A \frac{d u}{d z}
\end{aligned}
$$

from Fick's law, $\Delta N=D d A \frac{d u}{d z}$

$$
\begin{aligned}
\therefore D & =\frac{1}{3} a \bar{c}=\frac{\eta}{\rho} \\
& =\frac{1}{3} \frac{1}{\sqrt{2 \pi \sigma^{2}} n} \sqrt{\frac{8 k T}{m \pi}}
\end{aligned}
$$

$$
\begin{aligned}
\therefore \quad D & \propto \frac{1}{n}
\end{aligned} \propto \frac{T^{3 / 2}}{P} 1 \times \frac{1}{\sqrt{m}} \quad(\text { Graham's law) }
$$

Brownian motion
first observed by R. Brown in 1827 on suspended polen grain on water. Perpetual, random motion of big solute particle in solvent is the Brownian motion.
features: (i) Motion of Brownian particle is completely irregular. No two particle execute the same motion.
(i) Motion if is continuous \& based on discrete collisional steps.
(iii) Smaller particles are more agitated than larger particles, but motion is independent of the nature of suspended particles. Two particles of same wright \& size move equally fast at same temperation
(iv) The motion is vigorous with increasing temperature, f in lower viscosity
(v) Motion ionot modified due to shaking of container.

Basis fluctuation + dissipation
Law of Atmosphere
Brownian particles form a gas in equilibrium under the gravitational force. Consider a vertical cylinder of unit cross-section in a gas having end face at $Z \&$ $z+d z$ \& corresponding pressure $P \& P+d P$ then

Force of gravity in layer vertically downward $=1 \times d z \times \rho g=\rho g d z$ As cylinder $:$ in equilibrium, net force on layer $=0$.

$$
(p+d p)-p+\rho g d z=0
$$

$\infty d p=-\rho g d z$-(1) (-ives sign mean p decreases with z)
$m=$ man of single molecule, $n=$ average number of molecules $\rho=m n$. per unit volume.

Using Clapeyron's equation $P=n K_{B} T, \quad d P=d n K_{B} T$.
Equating (1) \& (2), $\quad d u K_{B} d T=-m n g d z$

$$
\text { wo } \frac{d u}{n}=-\frac{m g}{K_{B} T} d z \quad=-\frac{m g N}{R T} d z \quad\left(K_{B}=\frac{R}{N}\right)
$$

Integrating $\ln n=-\frac{m g N}{R T} z+\ln C$
at $z=z_{0}, n=n_{0} \quad \ln n_{0}=-\frac{m g N}{R T} z_{0}+\ln C$
or $\ln n=-\frac{m g N}{R T} z+\ln n_{0}+\frac{m g N}{R T} z_{0}$
or $\ln \frac{n}{n_{0}}=-\frac{m g N}{R T}\left(z-z_{0}\right)$
or $n=n_{0} e^{-\frac{m g N}{R T}\left(z-z_{0}\right)}$
Exponential decrease of no. density of Brownian particles with height.

For colloidal solution, particles have downward force due to gravity $\&$ upward force due to the buoyancy of liquid. If ρ^{\prime} is the density of particle then effective man of particle $m=\frac{4}{3} \pi r^{3}\left(\rho^{\prime}-\rho\right)$

$$
\therefore \quad \ln \frac{u}{n_{0}}=-\frac{4 \pi \gamma^{3}\left(\rho_{-\rho}^{\prime}\right) g N}{3 R T}\left(z-z_{0}\right)
$$

or $N=\frac{3 R T}{4 \pi r^{3}\left(\rho^{\prime}-p\right) g\left(z-z_{0}\right)} \ln \frac{n_{0}}{n}$
This Avogadro number can be calculated if γ, ρ^{\prime} are known.
Langevin equation of Brownian motion
Equation of motion $m \frac{d \vec{v}}{d t}=\underset{v}{-\vec{F}_{v}}+\underset{\vec{F}_{B}(t)}{\downarrow} \overrightarrow{v i s c o m ~}^{\downarrow} \underset{\text { Brocomian }}{ }$
Time average over sufficiently long time $t>r$, $m \frac{d\langle\vec{v}\rangle}{d t}=-\left\langle\vec{F}_{v}\right\rangle$ for colloidal fluid $m \frac{d v}{d t}=-\alpha v+F_{B}^{\prime}(t)$
from hydrodynamics, Stokes calculated that $\alpha=6 \pi \eta$ a for a spherical object of size a moving at velocity v through a liquid with viscosity η. This is known as Stokes law.
clearly $\langle x\rangle=0$ but $\left\langle x^{2}\right\rangle \neq 0 . \quad\left\langle F_{B}(t)\right\rangle=0$
Magnitude of fluctuations

$$
\begin{aligned}
& m \frac{d^{2} x}{d t^{2}}=-\alpha \frac{d x}{d t}+F_{B}(t) \\
& \Leftrightarrow m x \frac{d^{2} x}{d t^{2}}=-\alpha x \frac{d x}{d t}+x F_{B}(t) \\
& \Leftrightarrow m\left[\frac{d}{d t}(x \dot{x})-\dot{x}^{2}\right]=-\alpha x \frac{d x}{d t}+x F_{B}(t)
\end{aligned}
$$

Now $\left\langle x F_{B}(t)\right\rangle=\langle x\rangle\left\langle F_{B}(t)\right\rangle=0 \quad$ "statistical independence" and from equipartition theorem, $\frac{1}{2} m\left\langle\dot{x}^{2}\right\rangle=\frac{1}{2} k_{B} T$

$$
\therefore m\left\langle\frac{d}{d t}(x \dot{x})\right\rangle=m\left\langle\dot{x}^{2}\right\rangle-\alpha\left\langle x \frac{d x}{d t}\right\rangle+\left\langle x F_{B}(t)\right\rangle^{0}
$$

$$
\begin{aligned}
& \text { or } m \frac{d}{d t}\langle x \dot{x}\rangle=k_{B} T-\alpha\langle x \dot{x}\rangle \\
& \text { ar } \begin{aligned}
\frac{d\langle x \dot{x}\rangle}{d t}+\frac{\alpha}{m} & \langle x \dot{x}\rangle
\end{aligned}=\frac{k_{B} T}{m} \\
& \text { integrating factor }=e^{+\alpha / m t} \\
& \text { particular integral }=e^{-\alpha / m t} \int e^{\alpha / m t^{\prime}} \frac{k_{B} T}{m} d t^{\prime} \\
&=e^{-\alpha / m t} \frac{k_{B} T}{m}\left(\frac{m}{\alpha} e^{\alpha / m t}+c^{\prime}\right) \\
&\langle x \dot{x}\rangle=\frac{k_{B} T}{\alpha}+e e^{-\alpha / m t}
\end{aligned}
$$

at $t=0,\langle x \dot{x}\rangle=\langle x\rangle\langle\dot{x}\rangle=0 \quad \therefore \quad c+\frac{k_{B} T}{\alpha}=0$

$$
\begin{aligned}
& \therefore\langle x \dot{x}\rangle=\frac{k_{B} T}{\alpha}\left(1-e^{-\alpha / m t}\right) \\
& \therefore \frac{1}{2} \frac{d}{d t}\left\langle x^{2}\right\rangle=\frac{k_{B} T}{\alpha}\left(1-e^{-\alpha / m t}\right) \\
& <\left\langle x^{2}\right\rangle=\frac{2 k_{B} T}{\alpha}\left[t-\frac{m}{\alpha}\left(1-e^{-\alpha / m t}\right)\right]
\end{aligned}
$$

Case I $\quad \frac{m}{\alpha}>t, \quad e^{-\alpha / m t} \simeq 1-\frac{\alpha}{m} t+\frac{1}{2} \frac{\alpha^{2}}{m^{2}} t^{2}-\cdots \cdot$
$\therefore\left\langle x^{2}\right\rangle=\frac{k_{B} T}{m} t^{2}$. Therefore for a short time interval
the particle moves ballistically with constant velocity $v=\sqrt{\frac{k_{B} T}{m}}$
Case II

$$
\frac{m}{\alpha} \ll t, \quad e^{-\alpha / m t} \simeq 0, \quad t-\frac{w u}{\alpha} \gg 0
$$

$\left\langle x^{2}\right\rangle=\frac{2 K_{B} T}{} t$. Therefore the Brownian partide diffuses

$$
\text { as }\left\langle x^{2}\right\rangle=2 D t=\frac{2 k_{B} T}{\alpha} t=\frac{k_{B} T}{3 \pi \eta a} t=\frac{R T}{3 \pi N \eta a} t
$$

or $D=\frac{R T}{6 \pi N \eta^{a}}$
$D \propto \frac{1}{a}$ but independent of

Einstein's argument
$\tau=$ time interval \ll observation time scale
\rightarrow large enough than individual collision
that two consecutive intervals of τ are mutually independent. For N solute (Brownian) particle in time interval r, x coordinate increase by Δ (both \pm ive) due to thermal motion, no. of solute particles that are between Δ i $\Delta+d \Delta$ is
$d N=N \phi(\Delta) d \Delta$ with the property $\phi(\Delta)=\phi(-\Delta)$ \&

$$
\begin{aligned}
& \text { with the properly } \phi(\Delta)=\varphi(-\Delta) \\
& \int_{-\infty}^{\infty} \phi(\Delta) d \Delta=1 . \text { (normalized) }
\end{aligned}
$$

If $f(x, t) \therefore$ the no. of particles at time t at position x Then $f(x, t+\tau) d x=d x \int_{-\infty}^{\infty} f(x+\Delta ; t) \phi(\Delta) d \Delta$
Kramers-Moyal Expansion: $f(x+\Delta, t)=f(x, t)+\Delta \frac{\partial f(x, t)}{\partial x}+$

$$
\frac{\Delta^{2}}{2} \frac{\partial^{2} f(x, t)}{\partial x^{2}}+\cdots \cdot
$$

$$
f(x, t+\tau)=\frac{f(x, t)+\tau \frac{\partial f(x, t)}{\partial t}}{\infty} \text { as } \tau \text { is short }
$$

Equating $\frac{\partial f}{\partial t}=\frac{1}{\tau} \int_{-\infty}^{\infty} \frac{\Delta^{2}}{2} \phi(\Delta) d \Delta \frac{\partial^{2} f}{\partial x^{2}}=D \frac{\partial^{2} f}{\partial x^{2}}$
So

$$
D=\frac{1}{\tau} \int_{-\infty}^{\infty} \Delta_{-\infty}^{2} \phi(\Delta) d \Delta \quad \frac{\partial f}{\partial t}=D \frac{\partial^{2} f}{\partial x^{2}}
$$

Diffusion equation

CW Observation on Brownian movement in water showed that the horizontal displacement for a test particle in 11 successive intervals of 33 sees were $[0,5.6,-1.7,-10.8,6.6,-9.8,-11.2,-4.0,15.0,19.1,16.0] \times 10^{-4} \mathrm{~cm}$ $T=20^{\circ} \mathrm{C}$ \& $\eta_{\text {water }}=0.01 \mathrm{css}$ unit, radius of particle $1.15 \times 10^{-5} \mathrm{~cm}$ \& $R=8.82 \times 10^{7}$, ergs $/ \mathrm{deg} / \mathrm{mole}$. Obtain N.

$$
\begin{aligned}
\left\langle x^{2}\right\rangle & =\frac{R T}{N} \frac{1}{3 \pi \eta a} t \\
\left\langle x^{2}\right\rangle & =\frac{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+\cdots+x_{11}^{2}}{11}=1.18 \times 10^{-6} \mathrm{~cm}^{2} \\
\therefore \quad N & =\frac{R T t}{\left\langle x^{2}\right\rangle 3 \pi \eta a}=\frac{8.32 \times 10^{7} \times 293 \times 30}{1.18 \times 10^{-6} \times 3 \times 3.14 \times 0.01 \times 1.15 \times 10^{-5}} \\
& =5.72 \times 10^{23} .
\end{aligned}
$$

Equation of State for Real Gases

To define the state of a gaseous system completely, we need to know three parameters $P, V \& T$. By equation of state we mean the mathematical relation that express functional form of P, V, T as $f(P, V, T)=0$. The equation of state of a perfect gas $P V=R T$ is the most simple form of equation of stale.

Insufficiency of the perfect gas equation
Boyle found that that the perfect gas equation $P V=R T$ does not fit the experimental results and worlds only at ideal condition i.e. at very high temperature A very low pressure. In indicator diagram (P vs. v) one can obtain isothermals. Experiment by Regnault showed that no gas obeys PV $=$ constant but lither increases with pressure or they decrease \& increase with pressure. So modification of perfect gas laws is necessitated.

To explain the gradual increment of pu with P for H_{2}, He de consider the modified equation $P(v-k)=$ constants or $p v=$ constant +Pb . which increases with P. On the other hand to explain the initial drop of curves for $\mathrm{C}_{2}, \mathrm{~N}_{2}, \mathrm{CO}_{2}$ we take $\left(P+P_{i}\right) V=$ constant.
\therefore In combined form $\left(f+p_{i}\right)(v-k)=$ constant was noted in 1860 .
Semiderivation of vanderwal's equation
To obtain heuristically an expression for real gas, in 1909. Vanderwal made a few simplifying assumptions that
(i) The molecules are rigid spherical objects of diameter σ
(ii) They attract each other with a weak farce that depends only on the intermolecular distance f independent of the orientation of the molecules. no derive, first he considered the effect of finite size of molecules I then considered the weal attractive force f then superposed them which cannot be rigorously justified. Volume Correction
We know that $\frac{1}{3} \pi 0^{3}$ is the sphere of influence. of a molecule, so that canter of no other molecule can penetrate it. So if the total space contains N molecules then $(N-1) \frac{4}{2} \pi r^{3}$ is excluded from the center of others.
\therefore The actual free volume is $\quad V-(N-1) \frac{4}{3} \pi \sigma^{3}$ $\simeq V-\frac{4}{3} \pi N \sigma^{3}$ as $N \sim 10^{23} \gg 1$.

\therefore The actual number density is $n_{r}=\frac{N}{V-2 b}$ where $b=\frac{2}{3} \pi N \sigma^{\circ}$.
As in figure (b), if we consider the go to le enclosed in a vessel, then the molecule may approach only to a distance $\sigma / 2$ from the wall, as then the surface of the molceule will touch the wall. But since the sphere of influence is of radius σ meaning when a
molecule is at a distance σ, its sphere of influence extends to the wall \& therefore the center of no other molecule can lie within the hemisphere $\frac{2}{3} \pi \sigma^{3}$.
\therefore If we consider an elementary volume $d V$ in the neighbourhood of the wall, then $\frac{2}{3} \pi n_{r} \sigma^{3}$ i the fraction of volume unavailab for the center of other molecules. So if $d V_{a}$ is the amount of $d v$ existing is free space, then

$$
\begin{aligned}
& \text { existing as free space, thew } \\
& d v_{a}=d v-\frac{2}{3} \pi \sigma^{3} u_{r} d v=d v\left(1-\frac{2 / 3 \pi N \sigma^{3}}{v-2 b}\right)=d v\left(1-\frac{b}{v-2 b}\right)
\end{aligned}
$$

The actual number of molecules in $d v$ is $n_{r} d v_{a}$

$$
\begin{aligned}
& =\frac{N}{V-2 b}\left(1-\frac{b}{v-2 b}\right) d V=\frac{N d v}{v-2 b} \frac{\left(1-\frac{b}{V-2 b}\right)\left(1+\frac{b}{V-2 b}\right)}{\left(1+\frac{b}{V-2 b}\right)} \\
& =\frac{N d v}{V-2 b} \frac{1}{1+\frac{b}{V-2 b}} \quad\left(a s \frac{b^{2}}{(v-2 b)^{2}} \ll 1\right) \\
& =\frac{N d v}{V-b}
\end{aligned}
$$

If we would've considered the molecules as geometrical point mass objects, thew the number of molecules in $d v$ would be $\frac{N}{V} d V$ To finite size correction $i \quad V-b$ and volume correction : $b=\frac{2}{3} \pi \sigma^{3} N=4 \times \frac{4}{3} \pi N\left(\frac{\sigma}{2}\right)^{3}=4 \times$ Total volume of all molecules.

Pressure Correction
The molecule attract with a cohesive force that varies inversely as some power of the distance between them, which is negligible at long distance. On average, molecule get zero force due to isotropicity except near
 a surface. Parallel to surface forces will still balance but not pependicular to it, so uncompensated inward force L^{\prime}.. to boundary. Force on single molecule α number of attracting molecule/ec.

Also force acting/unit area of surface α number of molecules in that area of surface. Hence cohesive force/unit area of the surface is $\alpha n^{2}=\left(\frac{N}{V}\right)^{2}$ where N in the total number of molecules $f V \dot{b}$ the total volume. $\therefore P_{1} \propto \frac{1}{v^{2}}=\frac{a}{V^{2}}$. This cohesive pressure is called internal pressure or intrinsic pressure \& acts only in the boundary layer of any solid or fluid giving rise to surface tension in liquids \& tensile force in solids. It opposes the kinetic pressure but assists the external pressure in keeping the substance together. So it apposes the outward motion \& decreases the momentum \& hence the pressure. So P is replaced by $P+\frac{a}{V^{2}}$ as if the external pressure : ${ }^{\circ}$ increased.
© for one mole gas $\left(P+\frac{a}{V^{2}}\right)(V-b)=R T \quad \begin{aligned} & \text { Vanderwall's equation } \\ & \text { of state }\end{aligned}$ of state.

Constant volume method of finding " a " and " b "
from VW equation, $P=\frac{R T}{V-b}-\frac{a}{V^{2}}$ obtained by observing the rate of increase of pressure with temperature as in constant volume goo thermometer very accurately. But theyvary with temperature.

Cas	$a \mathrm{in} \mathrm{atm} \mathrm{am}^{6}$	b in ce	
	$\left(\times 10^{-5}\right)$	$\left(\times 10^{-5}\right)$	
	He	6.8	106
Ar	268.0	143	
O_{2}	273.0	143	
$: \mathrm{N}_{2}$	272.0	173	
CO	717.0	191	
NH_{3}	833.0	168	

Vander Waal's equation from Clausius virial theorem
In an entirely different approad, Clausius deduced rigorously the equation for a real gas, using. Newtonian concept of classical dynamics If x, y, z denote the coordinate of a molecule in an arbitrary reference frame and f_{x}, f_{y}, f_{z} denote the force components, then

$$
\begin{aligned}
& m \frac{d^{2} x}{d t^{2}}=f_{x}, m \frac{d^{2} y}{d t^{2}}=f_{y}, m \frac{d^{2} z}{d t^{2}}=f_{z} \\
& \text { as } \frac{d^{2}}{d t^{2}}\left(x^{2}\right)=2 \frac{d}{d t}\left(x \frac{d x}{d t}\right)=2\left(\frac{d x}{d t}\right)^{2}+2 x \frac{d^{2} x}{d t^{2}} \\
& \therefore x \frac{d^{2} x}{d t^{2}}=\frac{1}{2} \frac{d^{2}}{d t^{2}}\left(x^{2}\right)-\left(\frac{d x}{d t}\right)^{2} \text {, similarly for } y \text { and } z . \\
& \therefore m x \frac{d^{2} x}{d t^{2}}=f_{x} x \Rightarrow m\left\{\frac{1}{2} \frac{d^{2}}{d t^{2}}\left(x^{2}\right)-\left(\frac{d x}{d t}\right)^{2}\right\}=f_{x} x \\
& \therefore \frac{m}{2}\left(\frac{d x}{d t}\right)^{2}=\frac{m}{4} \frac{d^{2}}{d t^{2}}\left(x^{2}\right)-\frac{1}{2} f_{x} x . \text { similarly for } y \text { and } z .
\end{aligned}
$$

Adding all components, $\frac{1}{2} m\left\{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d t}{d t}\right)^{2}\right\}^{2}=\frac{m}{4} \frac{d^{2}}{d t^{2}}\left(x^{2}+y^{2}+z^{2}\right)-$ we get the K.E. of a

$$
\frac{1}{2}\left(x f_{x}+y f_{y}+z f_{z}\right)
$$ molecule.

Summing over all molecule and taking average over sufficiently long interval T, we get

$$
\begin{aligned}
& \text { g interval } \Upsilon \text {, we get } \\
& \frac{\tau}{\frac{1}{2} \sum_{i} m v^{2}}=\frac{\frac{m}{4} \sum_{i} \frac{\tau}{\frac{d^{2}}{d t^{2}}\left(r^{2}\right)}-\frac{1}{2} \sum_{i} \frac{\tau}{x f_{x}+y f_{y}+2 f_{z}} \cdot\left[\frac{\tau}{X}=\frac{1}{\tau} \int_{0}^{\tau} x d t\right]}{15 \vec{\gamma} \cdot \vec{f}} \text { are approximately } \frac{r^{2}}{15} \text { ardent }
\end{aligned}
$$

In steady state, $\frac{\tau}{\frac{1}{2} \sum_{i} m v^{2}}$ and $\frac{1}{\frac{1}{2} \sum_{i} \vec{\gamma} \cdot \vec{f}}$ are approximately constant throughout the motion. But $\frac{m}{4} \frac{1}{\tau} \int_{0}^{i} \sum_{i} \frac{d^{2}}{d t^{2}}\left(r^{2}\right) d t=\frac{m}{4 \tau} \int_{0}^{\tau} \sum_{i}^{d} d\left(2 r \cdot \frac{d r}{d t}\right) d t$ $=\left.\frac{m}{2 \tau} \int_{i} \vec{r} \cdot \frac{d \vec{r}}{d t}\right|_{0} ^{\tau}=0$ as $\vec{v}=\frac{d \vec{r}}{d t}$ fluctuates irregularly with time and using the Brownian motion concept, $\frac{\tau}{r .} \frac{d r}{d t}$ $=\frac{\tau}{r} \cdot \frac{\tau}{d r}=0$. Remember in Einstein's theory (Langevin equation)

$$
m \frac{d v}{d t}=-\alpha v+F_{B}(t),
$$

$$
\begin{aligned}
& \frac{\tau}{x F_{B}}=0 \quad \text { (Markovian) } \\
& \frac{\tau}{v F_{B}} \neq 0=\alpha k_{B} T \quad \text { (non. Markovian) }
\end{aligned}
$$

$\therefore \underbrace{\frac{1}{2} \sum_{i}^{\tau} m v^{2}}_{\text {ME }}=-\frac{1}{2} \sum_{\text {virial }}^{\frac{\tau}{\vec{r}} \cdot \vec{f}}]$
Virial theorem states that average Kinetic energy of translation of the molecules of a gas in the steady stale is equal to its viral.

Now, f_{x}, f_{y} and f_{z} include all the forces that act on the molcend these forces can le broadly categorized as.

1. The force of impact on the molecule due to collision with the vales of the vessel.
2. The force due to collision between two molienles.
3. The force of attraction between molceules within some distance. We consider the contribution of 1 to the virial. Imagine the gas confined in a box of dimension a, b, and c with faces cutting x axes at $x_{1} f x_{2}$. If the pressure exerted by the gas is p, then

$$
\begin{aligned}
\sum f_{x} \text { at } x_{1} & =p b c \\
\sum f_{x} \text { at } x_{2} & =-p b c . \\
\therefore-\frac{1}{2} \sum f_{x} x & =\frac{1}{2} p b c\left(x_{2}-x_{1}\right) \\
& =\frac{1}{2} p a b c=\frac{1}{2} p V \text { where }
\end{aligned}
$$

$v=a b c$ is the volume of the box. Similarly $-\frac{1}{2} \sum f_{y} y=\frac{1}{2} p v$ and $-\frac{1}{2} \sum F_{z} z=\frac{1}{2} p V$ for two other faces. \therefore Total contribution by the forces acting on the wall is $\frac{3}{2} P V$.

For an ideal gas, contribution form 2 and 3 is neglected, beeasse there io no cohesive force, nor they've a finite size, thew,

$$
\begin{aligned}
& \frac{1}{2} m N \bar{C}^{2}=\frac{3}{2} P V=\frac{3}{2} R T \quad \text { (using Virial theorem) } \\
& \sigma=\frac{1}{3} m n \bar{C}^{2}
\end{aligned}
$$

Equation of state for real gases
Now we incorporate point 2 and 3 but we do not know the nature of forces. For simplicity, let's assume isotropicily s" that the force \therefore fully radial, say $\phi(r)$, with $\phi(r)=-\frac{d E}{d r}$ where E in the P.E. due to intermolecular force. Let the coordinates of the center of two molecules be (x, y, z) and $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$. Then the components (F_{x}, F_{y}, F_{z}) and $\left(F_{x}^{\prime}, F_{y}^{\prime}, F_{z}^{\prime}\right)$ of the forces acting are

$$
\begin{aligned}
& F_{x}=\phi(r)\left(\frac{x-x^{\prime}}{r}\right) \\
& F_{x}^{\prime}=\phi(r)\left(\frac{x^{\prime}-x}{r}\right), \text { Therefore the }
\end{aligned}
$$

contribution to $\sum \cdot F_{x} x$ by these forces is $F_{x} x+F_{x^{\prime}} x^{\prime}=\frac{\phi(r)}{r}\left(x-x^{\prime}\right)^{2}$ similarly for the y and z components. So the total contribution :

$$
-\frac{1}{2} \sum \frac{\phi(r)}{r}\left[\underset{\longleftrightarrow}{\left[\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}+\left(z-z^{\prime}\right)^{2}\right]}=-\frac{1}{2} \sum r \phi(r) .\right.
$$

Hence from the virial theorem, we get $\frac{1}{2} m N \bar{c}^{2}=\frac{3}{2} p v-\frac{1}{2} \sum r \phi(r)$ But $\frac{1}{2} m \bar{c}^{2}=\frac{3}{2} K_{B} T, \therefore \quad P V=N K_{B} T+\frac{1}{3} \sum r \phi(r)$
Evaluation of $\sum r \phi(r)$
According to $M B$ distribution with P.E. We know

$$
N_{c}=N_{0}\left(\frac{m}{2 \pi k_{B} T}\right)^{3 / 2} 4 \pi c^{2} e^{-\left(\frac{1}{2} m c^{2}+\varepsilon\right) / k_{B} T} d c
$$

\rightarrow no. of molecules when P.E. $=0 . \cong N_{0} e^{-E / K_{B} T}$
Let no calculate the contribution of one molecule to the virial. Average number of other molecules lying within r and $r+d r$ from this molecule is $4 \pi r^{2} d r n \&$ the force exerted by them $i \phi(r)$. So the contribution of one molecule to $r \phi(r)$ is
$\int_{0}^{\infty} 4 \pi r^{3} n_{0} e^{-E / k_{B} T} \phi(r) d r$ and so the contribution of N molecules $\therefore^{\circ} \frac{N}{2} \int_{0}^{\alpha} 4 \pi r^{3} n_{0} \phi(r) e^{-E / k_{B} T} d r$ where division by 2 is to avoid the double-counting Substituting $n_{0}=\frac{N}{V}$ and $\phi(r)=-\frac{\partial E}{\partial r}$ wa lave contribution of N molecules $=\frac{2 \pi N^{2}}{V} \int_{0}^{\infty} r^{3} e^{-E / K_{B} T} d r \phi(r)$
Now $\int e^{-E / K_{B} T} \phi(r) d r=-\int e^{-E / K_{B} T} \frac{\partial E}{\partial r} d r=-K_{B} T \int_{0}^{\infty} e^{-E / K_{B} T} d\left(E / K_{B} T\right.$,

$$
=K_{B} T e^{-E / K_{B} T}+\text { constant }, \quad\left(\text { constant }=-K_{B} T\right)
$$

\therefore Integrating by parts $\left[\int u d v=u v-\int v d u\right]$

$$
\begin{aligned}
\therefore & \text { Integrating by parts }\left[\int u d v=\right. \\
& \frac{2 \pi N^{2}}{v}\left[\left\{r^{3}\left(k_{B} T e^{-E / k_{B} T}+\text { constant }\right)\right\}_{0}^{\infty}-\int_{0}^{\infty} 3 r^{2}\left(k_{B} T e^{-H / k_{B} T}+\text { constant) }\right) d r\right. \\
= & \frac{2 \pi N^{2}}{V} 3 k_{B} T \int_{0}^{\infty} r^{2}\left(1-e^{-E / k_{B} T}\right) d r=\sum r \phi(r) .
\end{aligned}
$$

Substituting this to real gas equation of state, we obtain

$$
P V=N K_{B} T+\frac{2 \pi N^{2}}{V} K_{B} T \int_{0}^{\infty} r^{2}\left(1-e^{-E / K_{B} T}\right) d r
$$

To evaluate the integral, we assume that molecules are rigid spheres of diameter σ, so $E=\infty$ for $r<\sigma$

$$
=\text { small for } r>\sigma
$$

$$
\begin{aligned}
& \therefore \int_{0}^{\sigma} r^{2} d r+\int_{0}^{\infty} r^{2}\left(1-e^{-E / k_{B} T}\right) d r=\frac{1}{3} \sigma^{3}+\int_{0}^{\alpha} \frac{r^{2} E d r}{k_{B} T} \\
& \therefore P V=R T+\frac{R T}{V}\left(b-\frac{a}{R T}\right) \text { with } \quad b=\frac{2}{3} N \pi \sigma^{3} \\
& a=-2 \pi N^{2} \int_{0}^{\infty} E r^{2} d r
\end{aligned}
$$

Note that " b " is identical to VW constant and " a " is positive (as E is negative). Thus the second virial coefficient obtained from virial theorem is $\frac{R T}{V}\left(b-\frac{a}{R T}\right)$
from VW equation $\left(P+\frac{a}{V^{2}}\right)(v-b)=R T$ we have

$$
P=\frac{R T}{V-b}-\frac{a}{V^{2}}=\frac{R T}{V}\left(1-\frac{b}{V}\right)^{-1}-\frac{a}{V^{2}}
$$

$$
\therefore P V=R T+\frac{R T}{V}\left(b-\frac{a}{R T}\right)+R T\left(\frac{b}{V}\right)^{2}+\cdots \cdot
$$

This equation agrees with the earlier obtained expression (using virial theorem) upto second virial coefficient. Third virial coefficient inn't correct \& do not agree with Clausius's virial theorem. So UW equation is theoretically correct unto $\frac{1}{v}$ term \& no further.
Nature of molecular force
Tine force of interaction between the molecules of a gas is a very complicated phenomena. It is found that the force is attractive when the molecules are far apart 4 strongly repulsive when they are closely. Lennard \& Jones showed by taking fluctuating dipole-dipole interaction that the P.E. without any charge is

$$
V(\gamma)=-\frac{A}{\gamma^{6}}+\frac{B}{\gamma^{12}}
$$

where r is intermolecular distance and A \& B are constants.

Andreco's Experiments \& inferences

Isothermals:
$A B \rightarrow p$ increases, v decreases
$B C \rightarrow v$ decreases without P changing
(Lever rule)
$\mathrm{CD} \rightarrow$ almost negligible dinge of V, P shoots up
"Critical Opalescence" 1910 Einstein's final theoretical investigation on Brownian motion.
liquifaction of gas. Vanderwaal's equation gives a curve as $\xrightarrow{\stackrel{\sim}{\sim}}$ Thomson hypothesized but Maxwell's construction was

5. that ambiguity can be removed, $\frac{\partial P}{\partial v}>0$.

$$
\begin{aligned}
& \left(P+\frac{a}{V^{2}}\right)(V-b)=R T \Rightarrow P=\frac{R T}{V-b}-\frac{a}{V^{2}} \\
& \text { or } \frac{d P}{d V}=-\frac{R T}{(V-b)^{2}}+\frac{2 a}{V^{3}}, \frac{\partial^{2} P}{\partial V^{2}}=-\frac{2 R T}{(v-b)^{3}}-\frac{6 a}{V^{4}}
\end{aligned}
$$

Supercooled vapour
Critical constants \& the law of corresponding states
From pictures above we find that there are three points $b, 0, e$ where P is same for three values of V which becomes one at point C. So the temperature at which maximum \& minimum coalesce is the critical temperature \& corresponding pressure \& volume is the critical pressure \& critical volume. To evaluate P_{c}, V_{c}, T_{c} we see that at $C, \frac{\partial P}{\partial V}=0$

Equation for the points of maxima-minima (dotted graph) is.

$$
\begin{align*}
& \text { Equation for the points of } \\
& \frac{R T}{(V-b)^{2}}=\frac{2 a}{v^{3}} \text { or } T=\frac{2 a(v-b)^{2}}{R V^{3}}-\text { (1) } \tag{2}\\
& \therefore p=\frac{R}{v-b} \frac{2 a(v-b)^{2}}{R v^{3}}-\frac{a}{v^{2}}=\frac{2 a(v-b)}{v^{3}}-\frac{a}{v^{2}}
\end{align*}
$$

At the critical point, $\left.\frac{d P}{d v}\right|_{v=v_{c}}=0=\frac{2 a}{v_{c}^{3}}-\frac{6 a\left(v_{c}-b\right)}{v_{c}^{4}}+\frac{2 a}{v_{c}^{3}}$
or, $2 a v_{c}-6 a v_{c}+6 a b+2 a v_{c}=0$ or $v_{c}=3 b$.
from (1), $T_{C}=\frac{2 a .4 b^{2}}{R \times 27 b^{3}}=\frac{8 a}{27 R b}$, or $T_{C}=\frac{8 a}{27 R b}$
From (2), $\quad P_{c}=\frac{2 a \times 2 b}{27 b^{3}}-\frac{a}{9 b^{2}}=\frac{a}{27 b^{2}}$, or $\quad P_{c}=\frac{a}{27 b^{2}}$
At 1 cc at $S T P, a=0.00874 \mathrm{~atm}_{\mathrm{cm}} \mathrm{cm}^{6}, b=0.0023$, ce for CO_{2} $(T=273 \mathrm{~K}), P=1 \mathrm{~atm}, V=1 \mathrm{ce}$.

Scanned by CamScanner

Using $V W$ equation $\left(P+\frac{a}{V^{2}}\right)(V-b)=R T$,

$$
\begin{aligned}
& \left(1+\frac{0.00874}{1^{2}}\right)(1-0.0023)=273 R, \quad \therefore R=3.687 \times 10^{-3} \\
& \therefore T_{C}=\frac{8 a}{27 R b}=\frac{8 \times 0.00874}{27 \times 3.687 \times 10^{-3} \times 0.0023}=305.5^{\circ} \mathrm{K}=32.5^{\circ} \mathrm{C}
\end{aligned}
$$

Experiments obtained $31.1^{\circ} \mathrm{C} \& 30.9^{\circ} \mathrm{C}$ (Andrews experiment):
In 1881, van der waal found that the three constants a, b, R can be replaced by $P / P_{c}, V / V_{c}, T / T_{c}$ so that the non-dimensional equation can be universally applied to all real gases that has an indicator diagram of $V W$.

If $P / P_{c}=P^{*}, V / V_{c}=V^{*}, T / T_{c}=T^{*}$ are reduced (P, V, T) then

$$
\left(P+\frac{a}{v^{2}}\right)(v-b)=R T \Rightarrow\left(P^{*} P_{c}+\frac{a}{v^{2^{2}} v_{c}^{2}}\right)\left(V^{*} v_{c}-b\right)=R T_{c} T^{*}
$$

Substituting $P_{c}, V_{c}, T_{c},\left(\frac{a}{27 b^{2}} P^{*}+\frac{a}{9 b^{2} v^{* 2}}\right)\left(3 b V^{*}-b\right)=R T^{*} \frac{8 a}{27 R b}$

$$
\left(p^{*}+\frac{3}{v^{*}}\right)\left(v^{*}-\frac{1}{3}\right)=\frac{8}{3} T^{*}
$$

The states of two substances for which their values of $\left(\rho^{*}, v^{*}, T^{*}\right)$ are equal are called "corresponding states." Clearly critical states of all bodies are their corresponding states. If tiro reduced parameter of any two substances are same, then the third reduced parameter must be identical for them. This is called the "law of corresponding state",

$$
\left(P^{*}\right)_{\mathrm{CO}_{2}}=\left(P^{*}\right)_{\mathrm{SO}_{2}} \& \quad\left(V^{*}\right)_{\mathrm{CO}_{2}}=\left(V^{*}\right)_{\mathrm{SO}_{2}} \text { then }\left(T^{*}\right)_{\mathrm{CO}_{2}}=\left(T^{*}\right)_{\mathrm{SO}_{2}}
$$

1. Calculate $V W$ constants " a " and " b " for a gm-mole of He gas using $T_{C}=5.3 \mathrm{~K}, P_{C}=2.25 \mathrm{~atm} \& \quad R_{0}=(273)^{-1}$ 伖 litre atmosphere 1°.
2. Calculate P_{c} \& T_{C} of He gas using $a=6.15 \times 10^{-5} \mathrm{~atm}-\mathrm{cm}^{6}, b=9.95 \times 10^{-1}$ cc per gm-molecule, where pressure is $1 \mathrm{~atm} \&$ volume is volume of gas at S.T.P.

Conduction
Transmission of Heat: CONDUCTION, CONVECTION, RADIATION
In conduction, heat is transmitted from one point to other through the substance without actual motion of particles. Air or vacuum is poor conductor of heat, hence woolen fabric keeps us warm or thermos flank keeps thing isolated. In convection, heat is transmitted by the actual motion of particles. Hot water circulation in heated kettle. Heat radiation is transmitted direelly without any intervening medium. Like sun radiation into earth by EM spectrum.

Coefficient of Thermal conductivity
If we have a plane slab of area A, thickness x having temperature of \& θ_{2} at its two faces then if S amount of heat is transmitted in
 time t, then $Q \propto A$

$$
\begin{array}{ll}
\alpha\left(\theta_{1}-\theta_{2}\right) \\
\alpha 1 / x & \alpha=\frac{K A\left(\theta_{1}-\theta_{2}\right) t}{x}
\end{array}
$$

$\alpha \quad k=$ coif.". of thermal conductivity'

This equation is similar to Chm's law $I=\frac{V}{R}$, redefined in terms of thermal resistance \& heat current. We know $R=\rho \frac{l}{A}=\frac{l}{\sigma A}$ where $\sigma=\frac{1}{\rho}$ is the electrical conductivity. Comparing with $R_{T h}=\frac{x}{k A}$ we can define the proportionality constant as coeff". of thermal conduatiats

$$
\begin{aligned}
{[t] } & =[T] \\
\therefore & {[K]=\left[M L T^{-3} \theta^{-1}\right] }
\end{aligned}
$$

Thermal diffusivity is defined as the ratio of thaomal unductirily to thermal capacity per unit volume. If $\rho=$ density \& $S=$ specific heat then $n=\frac{k}{\frac{m s}{v}}=\frac{K}{\rho S}=$ "Thermometric conductivity"

Rectilinear Propagation of heat along a bar

Consider a boar of uniform area of croes-section A contact with an oven at temperature θ_{0} of $x=0$. If θ is the excen temperature above the surroundings of the bar at P_{1} at a distance x from the point of contact, then excen temprester. at $P_{2}=\theta+\frac{d \theta}{d x} \delta x$.
If heat flowing through P_{1} in one second $q_{1}=-k A \frac{d \theta}{d x} \cdot \&$ heat flowing through p_{2} in one second $q_{2}=-K A \frac{d}{d x}\left(\theta+\frac{d \theta}{d x} \delta x\right)$
\therefore Heat gained per second by the rad between $P_{1} \& P_{2}$

$$
\begin{aligned}
Q & =Q_{1}-Q_{2}=-K A \frac{d \theta}{d x}+K A \frac{d}{d x}\left(\theta+\frac{d \theta}{d x} \delta x\right) \\
& =K A \frac{d^{2} \theta}{d x^{2}} \delta x
\end{aligned}
$$

This amount of heat is used in two ways before steady state is reached. (1) A part will increase the temperature, (2) Rest port is lost due to radiation from the exposed surface of the slab.

If rate of rise of temperature $i \frac{d \theta}{d t}$ then heat used per seined $=(A \delta x) \rho \times S \times \frac{d \theta}{d t}$ \& \& heats lost per second due to radiation mass specific
$=E P \delta x \theta$ where $E=$ emissive power of surface, $p=$ perimeter \& $\theta=$ average excess of temperature within $P_{1} \& P_{2}$.

$$
\therefore \quad q=A \delta x \rho S \frac{d \theta}{d t}+E P \delta x \theta=K A \frac{d^{2} \theta}{d x^{2}} \delta x
$$

Scanned by CamScanner

$$
\frac{K}{\rho S} \frac{d^{2} \theta}{d x^{2}}=\frac{d \theta}{d t}+\frac{P E}{A \rho S} \theta
$$

fourier's, differential equation
Special Cases 1: when heat lost by radiation is negligible:
When rod is covered boy insulating materials, heat lost $E P \delta x \theta=0$
\& total heat gained by rod is to raise the temperature, using

$$
\frac{k}{\rho s} \frac{d^{2} \theta}{d x^{2}}=\frac{d \theta}{d t} \quad \text { or } \quad n \frac{d^{2} \theta}{d x^{2}}=\frac{d \theta}{d t}
$$

Special Cases 2: after the steady state is reached:

$$
\frac{d \theta}{d t}=0 \quad \text { and } \quad \frac{d^{2} \theta}{d x^{2}}=\frac{P E}{K A} \theta=\mu^{2} \theta
$$

This is a second order homogeneous linear differential equation If $\theta=e^{m x}$ is the trial. solution then $m^{2}=\mu^{2} \quad r \quad m= \pm \mu$

$$
\therefore \quad \theta=\underbrace{A_{1} e^{\mu x}+A_{2} e^{-\mu x}}_{\substack{\text { Boundary } \\ \text { conditions }}}
$$

If the bar is sufficiently long, we can assume that under steady state no heat is lost from free end of the bar, as whole of the heat is lost from free sides as radiation \& free end will be at the temperature of the surroundings.
(a) when bar is of infinite length:

Boundary condition,

$$
\begin{array}{ll}
x=0, & \theta=\theta_{0} \\
x=\infty, & \theta=0
\end{array}
$$

(Dirichlet B.C.)
we see that $0=A_{1} e^{\infty}$ can be true only if $A_{1}=0$ and

$$
\theta_{0}=A_{2}
$$

$$
\therefore \quad \theta=\theta_{0} e^{-\mu x}
$$

Nuns after steady state is reached, temperature is exponentially distributed. This is useful in Ingen. Hausz experiment.
(b) When bar is of finite length:

$$
\begin{aligned}
& x=0, \quad \theta=\theta_{0} \\
& x=L, \quad \frac{d \theta}{d x}=0
\end{aligned}
$$

(Newman BC.)

In this case $A_{1}=\frac{\theta_{0}}{1+e^{2 \mu L}}, \quad A_{2}=\frac{\theta_{0}}{1+e^{-2 \mu L}}$
\therefore Solution $\theta=\theta_{0}\left[\frac{e^{\mu x}}{1+e^{2 \mu L}}+\frac{e^{-\mu x}}{1+e^{-2 \mu L}}\right]$
Special Case I at steady state Ideal case when there is no loss of heat by radiation ie. rod in thermally lagged \& in steady stale

$$
W \frac{d^{2} v}{d x^{2}}=\frac{d \theta}{d t}=0 \quad \cdot \quad \frac{d^{2} \theta}{d x^{2}}=0 \quad(\text { as } h \neq 0) \quad \text { E Laplace } \text { equation in }
$$ equation in

Solving $\frac{d}{d x}\left(\frac{d \theta}{d x}\right)=0$ ir $\frac{d \theta}{d x}=$ constant $=A$ eluetrostatico]

$$
\theta \theta=A x+B
$$

Find A \& B using $B . C$. Wat $x=0, \theta=\theta_{0}$

$$
x=\ell, \quad \theta=\theta_{m} \quad(\text { say })
$$

at unknown distance l, the temperature is θ_{m}.

$$
\begin{aligned}
& \theta_{0}=B \text { and then } \theta_{m}=A l+\theta_{0} \text { or } A=\frac{\theta_{m}-\theta_{0}}{l} \\
& \therefore \theta=\theta_{0}-\frac{\theta_{0}-\theta_{m}}{l} x
\end{aligned}
$$

The decrement is linear, as solution of Laplace equation is alovays a straight line".
In steady state length unto which wax melts in wax coated bar
from $\dot{\theta}=\theta_{0} e^{-\mu x}, \quad \ln \frac{\theta}{\theta_{0}}=-\mu x$ we see that if we have number of bars with conductivities $k_{1}, k_{2}, k_{3}, \cdots$ eli \& wax melts upto length $l_{1}, l_{2}, l_{3}, \ldots$ etc then at these length the temperature would be melting point of wax (Say θ_{m}).

$$
\begin{aligned}
& \therefore \ln \frac{\theta_{m}}{\theta_{0}}=-\mu_{1} l_{1}=-\mu_{2} l_{2}=-\mu_{3} l_{3}=\cdots \\
& \therefore \sqrt{\frac{P E}{K_{1} A}} \mu=\sqrt{\frac{P E}{K_{2} A}} l_{2}=\sqrt{\frac{P E}{K_{3} A}} l_{3}=\cdots \\
& \quad \text { or } \quad l / \sqrt{k}=\text { constant } \quad \ell \alpha \sqrt{k}
\end{aligned}
$$

Hence in a steady state the length upto which the wax melts along a wax wated bar is proportional to the square root of the coefficient of thermal conductivity of the material.
Periodic flow of heat: Propagation of heat wave in an insulated rod with one end heated sinusoidally.

Consider a system of infinite length, well insulated (no loss due to radiation) whose one end is connected to an heat source from where heat is supplied not continuously but periodically. with θ_{0} amplitude and w being the angular frequency.

Using fourier's equation $h \frac{d^{2} \theta}{d x^{2}}=\frac{d \theta}{d t}+\frac{P E}{A g} \theta^{0}$ without radiation loss, the unidirectional heat equation in $h \frac{d^{2} \theta}{d x^{2}}=\frac{d \theta}{d t}, h=\frac{k}{\rho S}$ is the thermal diffusivity of the rad.

Let $\theta=u(x)+v(x, t)$ is a trial solution. then separating the variables, $\quad \frac{d^{2} u}{d x^{2}}=0, \quad h \frac{d^{2} v}{d x^{2}}=\frac{d v}{d t}$

The solution of v-equation can be $v=F(x) e^{i \beta t}$

$$
\begin{aligned}
& \therefore h f^{\prime \prime}(x)=i \beta f(x) \text { oo } f^{\prime \prime}(x)=\frac{i \beta}{h} f(x)=\left(\sqrt{\frac{i \beta}{h}}\right)^{2} f(x) \text {. } \\
& \therefore \quad \text {. }
\end{aligned}
$$

, Taking the trial solution as $F(x)=A e^{m x}$ we obtain.

$$
\begin{aligned}
& \text { ling the trial solution as } F(x)=A e^{\text {we }} \frac{i \beta}{h} \text { or } m= \pm \sqrt{\frac{i \beta}{h}} \quad \therefore f(x)=A_{1} e^{\sqrt{i \beta / h} x}+A_{2} e^{-\sqrt{i \beta / 4 x}} \\
& m^{2}=A_{1}=0 .
\end{aligned}
$$

As $x \rightarrow \infty$ yields $F(x) \rightarrow \infty$ (uaphysical), so $A_{1}=0$.

$$
\therefore f(x)=A_{2} e^{-\sqrt{\frac{i \beta}{h}} x}
$$

Now $(1+i)^{2}=2 i \quad . \quad i=\frac{1}{2}(1+i)^{2} \quad \sqrt{i}= \pm \frac{1}{\sqrt{2}}(1+i)$

$$
\therefore f(x)=A_{2} e^{-(1+i) \sqrt{\frac{\beta}{2 h}} x}+A_{3} e^{(1+i) \sqrt{\frac{\beta}{2 h}} x}
$$

$$
\begin{array}{r}
\therefore v=f(x) e^{i \beta t}=\left[A_{2} e^{-\sqrt{\frac{\beta}{2 h} x} e^{i\left(\beta t-\sqrt{\frac{\beta}{2 h}} x\right)}+}+A_{3} e^{\sqrt{\frac{\beta}{2 h}} x} e^{i\left(\beta t+\sqrt{\left.\frac{\beta}{2 h} x\right)}\right.}\right]
\end{array}
$$

Here also, as $x \rightarrow \infty, v \rightarrow \infty$ (unphysical), hence $A_{3}=0$.

$$
s_{0} v(x, t)=A_{2} e^{-\sqrt{\frac{\beta}{2 h}} x} e^{i\left(\beta t-\sqrt{\frac{\beta}{2 h}} x\right)}
$$

Putting the bound arg condition for $\theta=\theta_{0} e^{i \omega t}$ at $x=0$, weser

$$
\begin{aligned}
& \theta_{c} e^{i \omega t}=A_{2} e^{i \beta t} \quad \therefore_{0} \quad \therefore \quad A_{2}=\theta_{0}, \beta=\omega \\
& \text { Hence } \quad \begin{array}{l}
\quad \theta_{0} \\
-\sqrt{\frac{\omega}{2 h}} x
\end{array} e^{i\left(\omega \cdot t-\sqrt{\frac{10}{2 h}} x\right)}
\end{aligned}
$$

Palling a constant phase factor ϕ from the solution of u, we lave

$$
\theta=\theta_{0} e^{-\sqrt{\frac{\omega}{2 h}} x} e^{i\left[\omega t-\sqrt{\frac{\omega}{2 h}} x-\phi\right]}
$$

This represents a progressive wave traveling with velocity

$$
v=\frac{\omega}{k}=\frac{\omega}{\sqrt{\frac{\omega}{2 h}}}=\sqrt{2 \omega h}=\sqrt{\frac{2 \omega K}{\rho S}}=\sqrt{\frac{2 k}{\rho^{S}} \frac{2 \pi}{T}}=\sqrt{\frac{4 \pi K}{T \rho S}}
$$

damping factor $=\sqrt{\frac{\omega}{2 h}}$

$$
\text { As } \frac{\lambda}{T}=v=\sqrt{\frac{4 \pi k}{T \rho S}} \quad \text { or } \quad k=\frac{\lambda^{2} \rho S}{4 \pi T}
$$

CW In a periodic flow of heat along an iron bar, the periodic time is 4 minuter. If the temperature travels maximum 6 cm in 1 minute, calculate the thermal conductivity of iron. Density of iron $=7.8 \mathrm{gm} / \mathrm{cm}^{3}$, specific heat of iron $=0.11 \mathrm{cal} / \mathrm{gm}{ }^{\circ} \mathrm{C}$.

$$
v=\sqrt{2 \omega h}=\sqrt{\frac{4 \pi K}{T \rho S}} \text { or } \quad v^{2}=\frac{4 \pi K}{T \rho S}
$$

Here $v=6 \mathrm{~cm} / \mathrm{min}=0.1 \mathrm{~cm} / \mathrm{sec}, T=4 \mathrm{~min}=4 \times 60=240 \mathrm{sec}$ $S=0.11 \mathrm{cal} / \mathrm{gm}^{\circ} \mathrm{C}, \rho=7.8 \mathrm{gm} / \mathrm{cm}^{3}$

$$
\therefore K=\frac{v^{2} T \rho S}{4 \pi}=\frac{0.1^{2} \times 240 \times 7.8 \times 0.11}{4 \times 3.14}=0.1639 \mathrm{calcm}^{-1} \mathrm{sec}^{-1} e^{-1}
$$

Heat flow in three dimensions
We have learned Fourier's law in one dimension,
$h \frac{d^{2} \theta}{d x^{2}}=\frac{d \theta}{d t}+\mu^{2} h \theta$. In three dimensions, we Lave
$n \nabla^{2} \theta=\frac{d \theta}{d t}+\mu^{2} h \theta$. In steady state, $\frac{d \theta}{d t}=0$ and withan radiation loss, $\mu^{2}=0$ yields $\nabla^{2} \theta=0$ This is called "Laplace equation" of heat flow. Compare with Electrostatics, Laplace equatis
(a) Spherical shell Method (Radial flow)

Consider a spherical shell of inner radius a and outer radius b. Let or \& θ_{2} are the temperature at inside \& outside the sphere. We wont to find out temperature at $a<r<b$.

In spherical polar coordinates, Laplace in:

$$
\begin{array}{r}
\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial(\#)}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta^{2}}\left(\sin \theta \frac{\partial(\#)}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} 巴 7^{0}}{\partial \phi^{2}}=0 \\
{[\text { as }(\mathbb{H}) \neq(\mathbb{H}(\theta, \phi)]}
\end{array}
$$

$$
[\text { as } \mathbb{H} \nVdash(\theta, \phi)]
$$

$$
\begin{aligned}
& \text { or } \frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial \#}{\partial r}\right)=0 \\
& \text { or } r^{2} \frac{d \Pi}{d r}=\text { constant }=c_{1} \text { (say) } \\
& \text { or } d \Perp=\frac{c_{1}}{r^{2}} d r \quad \text { or } \quad(\mathbb{H})=-\frac{c_{1}}{r}+c_{2}
\end{aligned}
$$

Now we use Dirichlet Boundary condition $(\mathbb{H})=\theta$, at $r=a$ $(H)=\theta_{2}$ at $r=b$.

$$
\begin{aligned}
\therefore \quad \theta_{1} & =-\frac{a}{a}+c_{2} \quad \text { or }\left(\theta_{1}-\theta_{2}\right)=c_{1}\left(\frac{1}{b}-\frac{1}{a}\right) \\
& \theta_{2}=-\frac{c_{1}}{b}+c_{2} \quad \text { or } c_{1}=\frac{a b\left(\theta_{1}-\theta_{2}\right)}{a-b} \\
\therefore c_{2}= & \theta_{1}+\frac{c_{1}}{a}=\theta_{1}+\frac{\left(\theta_{1}-\theta_{2}\right) b}{a-b}=\frac{a \theta_{1}-b \theta_{2}}{a-b} .
\end{aligned}
$$

Scanned by CamScanner
\therefore The temperature at any distance $r>$

$$
\text { (H) }=\left[\frac{a b\left(\theta_{1}-\theta_{2}\right)}{b-a}\right] \frac{1}{r}+\frac{a \theta_{1}-b \theta_{2}}{a-b}
$$

(b) Cylindrical flow of heat
consider a cylindrical tube of length l, inner radius a 4 outer radius b with temperature of inner surface $\theta_{1} \&$ outer surface θ_{2}
 with $\theta_{1}>\theta_{2}$ where heat is conducted radially across the wall of the tube. Laplace eq becomes.

We use Dirichlet boundary condition, (17) $=\theta_{1}$ at $\rho=a$

$$
(H)=\theta_{2} \text { at } \rho=b \text {. }
$$

$$
\begin{aligned}
& \therefore \theta_{1}=c_{1} \ln a+c_{2} \quad \therefore \theta_{1}-\theta_{2}=c_{1} \ln a_{6} \\
& \theta_{2}=c_{1} \ln b+c_{2} \\
& \therefore c_{2}=\theta_{1}-c_{1} \ln a=\frac{\theta_{1}-\theta_{2}}{\ln \theta_{b}} . \\
&\left.\therefore \ln a=\theta_{1}-\frac{\left(\theta_{1}-\theta_{2}\right)}{\ln a_{6}} \ln a-\ln b\right)-
\end{aligned}
$$

$$
=\frac{\theta_{2} \ln a-\theta_{1} \ln b}{\ln a_{1}} \text {. So the temperature at any distance }
$$

$$
r i \text {, (H) }=\frac{\theta_{1}+\theta_{2}}{\ln a_{b}} \ln \rho+\frac{\theta_{2} \ln a-\theta_{1} \ln b}{\ln a_{b}}
$$

Using fourier's law at unit time, $Q=k 2 \pi r l \frac{d \theta}{d r}$

$$
\text { or } a \int_{a}^{b} \frac{d r}{r}=2 \pi k l \int_{\theta_{1}}^{\theta_{2}} d \theta=2 \pi k l\left(\theta_{2}-\theta_{1}\right) \text {. }
$$

$$
\begin{aligned}
& \frac{1}{\rho} \frac{d}{d \rho}\left(\rho \frac{\partial \Theta}{\partial \rho}\right)+\frac{1}{\rho^{2}} \frac{\partial^{2}(\not) r^{2}}{\partial^{2}}+\frac{\partial^{2} \sharp}{\partial \phi^{2}}=0 \\
& {[\bigoplus \neq H(\theta, \phi)]} \\
& \text { or } \frac{1}{\rho} \frac{d}{d \rho}\left(\rho \frac{d(A)}{d \rho}\right)=0 \quad \text { os } \quad \rho \frac{d(A}{d \rho}=\text { constant }=C_{1} \\
& \infty d\left(H=\frac{c_{1}}{\rho} d \rho \quad \text { or } H=c \ln \rho+c_{2}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { or } \ln \frac{b}{a}=2 \pi k l\left(\theta_{2}-\theta_{1}\right) \quad \theta=\frac{2 \pi k l\left(\theta_{1}-\theta_{2}\right)}{\ln a_{b}} \\
& \therefore k=\frac{\theta \ln a_{b}}{2 \pi l\left(\theta_{1}-\theta_{2}\right)}
\end{aligned}
$$

Wiedemann - franz law The law states that ratio of thermal and electrical conductivities for all metals is directly proportion to the absolute temperature of the body.

$$
\frac{k}{\sigma} \propto T \text { or } \frac{K}{\sigma T}=\text { constant }=2 \sqrt{\frac{6}{\pi}} \frac{K_{B}^{2}}{e^{2}}=L\left(\begin{array}{c}
\text { Lorentz } \\
\text { number })
\end{array}\right.
$$

Physically this means that substances which are good conductor of heat are also good conductor of electricity.
Drude's theory of electrical conduction
Drude in 1900 introduced the concept of free electron gas model of metals, \& obtained the electric conductivity of the metal. All metals (conductors) contain a huge number of nearly free electrons that lechave as gas atoms in Kinetic theory. If m is mass of electron $l v$ is velocity at temperature T,

$$
\frac{1}{2} m v_{r m s}^{2}=\frac{3}{2} K_{B} T \quad o \quad v_{m m}=\sqrt{\frac{3 k_{B} T}{m}}
$$

If we apply an elutric field E \& then electron will experience a force $X E$ and accelarate with $\frac{\mathrm{eE}}{\mathrm{m}}$. Now as the electron moves to hit an atom or ion, if $\lambda \therefore$ the mean interatomic distance that is gone in time then average drift velocity of the election

0	0	0	
0	0	0	0
0	0	0	0

\therefore The current densily $J=n e v_{d}=\frac{n e^{2} \lambda}{2 m v_{r m}} E=\sigma E$
and Thermal conductivity $K=\frac{1}{3} n \bar{c} \lambda \frac{d E}{d F}$ \& for only translational eng case, $E=\frac{3}{2} K_{B} T, \quad K=\frac{1}{3} n \bar{c} \lambda \frac{3}{2} K_{B}=\frac{1}{2} n \bar{c} \lambda K_{B}$

Scanned by CamScanner

$$
\begin{aligned}
\therefore \frac{k}{\sigma} & =\frac{\frac{1}{2} n \bar{c} \lambda K_{B}}{n e^{2} A} 2 m \sqrt{\frac{3 K_{B} T}{m}} \\
& =2 \sqrt{\frac{8 K_{B} T}{m \pi}} \frac{k \lambda K_{B}}{2 \mu e^{2} \gamma} \sqrt{\frac{3 K_{B} T}{m x}}=2 \sqrt{\frac{6}{\pi}} \frac{K_{B}{ }^{2} T}{e^{2}} .
\end{aligned}
$$

$$
\therefore \frac{K}{\delta T}=\text { constant }=\text { Loretz number } L \text {. }
$$

Heat conduction through a slab of varying thickness
 when some thick icelayer has formed, heat given out Las to conduct through this thickness. Let us find out the time required to increase the icelayer from x_{1} to x_{2}. If at t, ice formed is x then within time $d t$, $d x$ thickness of ice is formed, then the heat liberated is $Q=A d x \rho L$. This heat flows in $d t$ from 0° C to outside temperature $-\theta^{\circ} c . \quad \therefore \quad Q=\frac{K A[0-(-\theta)] d t}{x}=\frac{K A \theta}{x} d t$

$$
\therefore A d x \rho L=\frac{K A \theta}{x} d t \text { or } x d x=\frac{K \theta}{\rho L} d t
$$

Integrating, $\frac{1}{2} x^{2}=\frac{k \theta}{v L} t+C$
Now at $t=0, x=x_{1}, t=t_{2}, x=x_{2}$

$$
\begin{aligned}
\therefore \frac{1}{2} x_{1}^{2} & =c \quad \& \quad \frac{1}{2} x_{2}^{2}=\frac{k \theta}{\rho L} t_{2}+\frac{1}{2} x_{1}^{2} \\
\text { or } t_{2} & =\frac{\sqrt{2}}{2 k \theta}\left(x_{2}^{2}-x_{1}^{2}\right)
\end{aligned}
$$

If at $t=0, x=0$ then time required to form a layer of thicken x $\therefore \quad t=\frac{\rho L}{2 K \theta} x^{2}$
Heat conduction through a composite slab Consider a slab made of two materials of thickness x_{1} and x_{2} and conductivities k_{1} and K_{2}. At steady state, heat enters at O_{1}

crossing interface at θ \& leaves out of the second face θ_{2}.

$$
\begin{aligned}
& Q=\frac{k_{1} A\left(\theta_{1}-\theta\right)}{x_{1}}=\frac{k_{2} A\left(\theta-\theta_{2}\right)}{x_{2}} \\
& \text { or } \theta=\frac{A\left(\theta_{1}-\theta\right)}{\frac{x_{1}}{k_{1}}}=\frac{A\left(\theta-\theta_{2}\right)}{\frac{x_{2}}{k_{2}}}=\frac{A\left(\theta_{1}-\theta_{2}\right)}{\frac{x_{1}}{k_{1}}+\frac{x_{2}}{k_{2}}}
\end{aligned}
$$

If the composite slab can be replaced by a single slab of thickness $x_{1}+x_{2}$ such that it will conduct in unit time heat Q under temperature difference $\theta_{1}-\theta_{2}$, then the equivalent conductivity be K., then

$$
\begin{aligned}
& \text { then } \\
& Q=\frac{K A\left(\theta_{1}-\theta_{2}\right)}{x_{1}+x_{2}}=\frac{A\left(\theta_{1}-\theta_{2}\right)}{\frac{x_{1}}{k_{1}}+\frac{x_{2}}{k_{2}}} \quad \therefore \frac{x_{1}+x_{2}}{k}=\frac{x_{1}}{k_{1}}+\frac{x_{2}}{k_{2}} \\
& x_{1}+x_{2}+x_{3}+\cdots-\underline{x_{1}}+\underline{x_{2}}+\underline{x_{3}}+\cdots
\end{aligned}
$$

If we have $n \geqslant 2$ slabs then $\frac{x_{1}+x_{2}+x_{3}+\cdots}{k}=\frac{x_{1}}{k_{1}}+\frac{x_{2}}{k_{2}}+\frac{x_{3}}{k_{3}}+\cdots$

$$
\Leftrightarrow \quad \sum_{i=1}^{N} x_{i} \frac{1}{k}=\sum_{i=1}^{N} \frac{x_{i}}{k_{i}}
$$

HW (1) One end of a metal rod is in contact with a source of heat at $100^{\circ} \mathrm{C}$. In the steady state the temperature at a point 10 cm from the source is $60^{\circ} \mathrm{C}$. Find the temperature at a point 20 cm from the source.
(2) Suppose 10 cm of ice has already formed on a pond sothat the air outside is at $-5^{\circ} \mathrm{C}$. How long will it take for the next milimeter to form? Given for ice $L=80 \mathrm{cal} / \mathrm{gm}, \rho=0.917 \mathrm{gm} / \mathrm{ce}$ \& $K=0.005$ cos unit.
(3) A lake is covered with ice 2 cm thick. Temperature of air is $-15^{\circ} \mathrm{C}$. Find the rate of thickening of ice in $\mathrm{cm} / \mathrm{hour}$. For ice given $k=0.004$ cos unit, $\rho=0.9 \mathrm{gm} / \mathrm{ce}, L=80 \mathrm{cal} / \mathrm{gm}$.
(A) Two equal bars of copper \& aluminium are welded end to end and lagged. If the free ends of the copper $\&$ aluminium are maintained at $100^{\circ} \mathrm{C}$ and $0^{\circ} \mathrm{C}$ respectively. Find the temperature of welded surface K of $C u \& A l$ are 0.92 and 0.5 gs unit respectively.

Radiation
According to Maxwell, thermal radiation is defined as the transfer of heat from hot to cold body without any heating of the intervening medium. Thermal radiation, e.go heat, has the same nature as light with properties:
(i) Electromagnetic wave nature to travel in Ether/vacuum at velocity of light.
(i) travels in a straight line like light \& exhibit reflection, refraction, interference, diffraction \& polarisation.
These are not visible radiation but usually in $U V, x$ ray or r-ray. These can be detected using Thermopiles, Bolometer etc.

Blackbody radiation If heat is transferred through matter, a fraction of incident radiation is absorbed (say a), a fraction reflected (say b) and rest transmitted (say c) then $a+b+c=1$ and if $b=c=0$ then the body appears black beaune nothing is repleted or transmitted. When heated, such blacletody radiates energy of all wavelengths. Mise principles are used for instance (a) White clothes are trendy in summer but dark coloured clothes in winter, as white clothes reflect maximum light f is least warm. converse: true with dark shades. (b) Utensils are polished atop \& Slackened bottom so that maximum heat is absorbed \& minimal heat flows out from above, (C) Hot water pipes are printed black inside room \& white outside to provide heating to room in winter \& prevent radiation at outside. (d) thermocouple junctions that has to be heated is painted black and so on.

Spectral Emissive Power e_{λ} : If in the radiant energy emitted normally from unit area of the blackbody surface per unit time in unit solid angle within a unit wavelength range.
If spectral energy density is u_{λ} then $u_{\lambda} d \lambda$ in radiated energy from area $d S$ in solid angle $d \omega$ in time $d t$, then

$$
e_{\lambda} d \lambda=\frac{u_{\lambda} d \lambda}{d S d \omega d t} \rightarrow[\lambda, \lambda+d \lambda]
$$

Absorptive power a_{A} : It is the fraction of incident to absorber radiation, so if Q_{λ} is incident $\& Q_{\gamma}$ is abrabed then

$$
\begin{aligned}
& \text { adiation, so if } Q_{\lambda} \text { is incident } \Delta Q_{\gamma} \\
& a_{\lambda}=\frac{Q_{\lambda}}{Q_{\lambda}} \text { and tolar heat absorbed by all } \lambda=\int_{0}^{\infty} a_{\lambda} Q_{\lambda} d \lambda \text {. }
\end{aligned}
$$

Total Emission from de

$$
\begin{aligned}
& \text { Total Emission from dy } \\
& \text { (Q/QाIIIIII) emission on one side }=\frac{u_{\lambda} d \lambda}{d t}=e_{\lambda} d \lambda d S d \omega . \text { So the total. } \\
& =e_{\lambda} d \lambda d S \int_{\theta=0}^{2 \pi} e_{\lambda} d \lambda d S d \omega \cos \theta \\
& =\pi \operatorname{cin} \theta \cos \theta d \theta \int_{0}^{2 \pi} d \phi=\pi e_{\lambda} d \lambda d S .
\end{aligned}
$$

Mutual radiation between two surfaces
The solid angle subtended by $d s^{\prime}$ at $d s$ is
 $d \omega^{\prime}=\frac{d s^{\prime} \cos \theta^{\prime}}{r^{2}}$. So the amount of radiatis incident on $d S$ i. $e_{\lambda} d \lambda d S \cos \theta d \omega^{\prime}$ $=e_{\lambda} d \lambda d s \cos \theta \frac{d s^{\prime} \cos \theta^{\prime}}{r^{2}}$ and the energy absorbs
$\therefore a_{\lambda} e_{\lambda} d \lambda d s \cos \theta \frac{d s^{\prime} \cos \theta^{\prime}}{r^{2}}$ and energy reflected will bee

$$
\left(1-a_{\lambda}\right) e_{\lambda} d \lambda d s \cos \theta \frac{d s^{\prime} \cos \theta^{\prime}}{r^{2}}
$$

Kirchhoff's law Ratio of emissive to absorptive power for a given wavelength at a given temperature for all bodies b° same \& equal to the emissive power of a perfect black body.

By definition, $a_{\lambda}=$ absorptive power of a body, if $d Q$ heat is incident on unit area in unit time within $\lambda \& \lambda+d \lambda$, then heat absorbed $=a_{\lambda} d Q$ and $d Q-a_{\lambda} d Q$ will be transmitted or reflected. If $e_{\lambda}=$ emissive power then $e_{\lambda} d \lambda$ is the energy emitted per unit area per unit time within $\lambda \& \lambda+d \lambda$.
\therefore Total emitted energy $=\left(1-a_{\lambda}\right) d Q+e_{\lambda} d \lambda$ and in equilibrium. $d \theta=\left(\gamma-a_{\lambda}\right) d \varphi+e_{\lambda} d \lambda \Rightarrow a_{\lambda} \underline{\underline{d g}}=e_{\lambda} d \lambda$.

For a perfect blackbody $e_{\lambda}=E_{\lambda}$ (notation) \& $a_{\lambda}=1$.

$$
* \underline{d Q}=E_{a} d \lambda .
$$

$$
E_{\lambda}=\frac{e_{\lambda}}{a_{\lambda}} \quad \text { Kirchofors law }
$$

It also means not only radiation is independent on the shape or nature of wall of a hollow radiator \& good absorbers are also good emiftiers. Na vapour that emit yellow $D_{1} \& D_{2}$ lines of $\lambda 5890 \AA$ \& $5896 \AA$ is also a good absorber of light of these two wavelengths. This explains the fraunhofer dark lines in Sun's spectrum.
Pressure of diffuse radiation
When radiation fall e normally to a surface then the radiation pressure is the sum of incident \& reflected waves energy density. Larmor calculated it using Kepler's observation of radiation pressure of
tail of comets rotating around so as to be always opposite to sun. Inside a heated container such radiation is diffuse.

Consider volume V at a very large distance from container wall so that radiation through V is the radiation coming from surface of sphere of radius r. As by construction $d s \ll v$, we
 can divide solid angle subtended by V at $d S$ into many cones of solid angle $d w$ with area $d s^{\prime}$, so that $d \omega=\frac{d s^{\prime}}{r^{2}}$.

If the volume V intersects infinitesimal cone of length l then time taken by radiation to travel is $d t=\frac{l}{c}$. If K is specific intensity or radiation emitted per unit area per unit time per unit solidargle thew energy coming from $d S=K d S d \omega d t$

$$
=k d S \frac{d s^{\prime}}{r^{2}} \frac{\ell}{c}
$$

So the radiation contained in $V=\sum_{V} K d s \frac{d s^{\prime}}{r^{2}} \frac{\ell}{e}=\frac{K d s}{c r^{2}} \sum_{v} \ell d s^{\prime}$

$$
=\frac{K d s}{C r^{2}} v
$$

\therefore Total radiation in V from the whole surface $:=\sum_{S} \frac{K d S}{e r^{2}} V$

$$
=\frac{K V}{C r^{2}} \sum_{s} d s=\frac{K V}{C r^{2}} 4 \pi r^{2}=\frac{4 \pi K}{C} V, \quad E=\frac{4 \pi K}{c}
$$

crenergh density of diffuse radiation is $\frac{4 \pi k}{c}$. Suppose a
 parallel beam of radiation: incident on $d A$ at angle θ so that, pressure on $B C$ is

$$
\begin{aligned}
& d A \text { at angle } \theta \text { so that, pressure on } B C \text { is } \\
& P=\frac{\text { intensity of radiation }}{\text { speed of radiation }}=\frac{K}{C} \sin \theta d \theta d \phi
\end{aligned}
$$

Force due to radiation on $B C=\frac{K}{C} \sin \theta d \theta d \varnothing B C$ \& the normal component: $=\frac{k}{c} \sin \theta d \theta d \phi B C \cos \theta=\frac{k}{c} \sin \theta d \theta d \phi A B \cos ^{2} \theta$
\therefore Total radiation pressure on $A B=2 \int_{\theta=0}^{\pi / 2} \int_{\phi=0}^{2 \pi} \frac{k}{e} \sin \theta d \theta d \phi \cos ^{2} \theta$
also reaction $\quad 4 . \begin{aligned} & \text { presume }\end{aligned}$
Scanned by CamScanner

$$
\begin{aligned}
& =\frac{2 k}{c} \int_{\theta=0}^{\pi / 2} \cos ^{2} \theta \sin \theta d \theta \int_{\phi=0}^{2 \pi} d \phi=\frac{1}{3} \frac{4 \pi k}{e}=\frac{1}{3} E . \\
& \therefore P=\frac{1}{3} E
\end{aligned}
$$

Stefan-Boltzmann laws
For a perfect blackbody, the rate of emission of radiant energy by unit area is proportional to the fourth power of its absolute temperature.

$$
E=\sigma T^{4}, \quad \sigma=\text { Stefan's constant }=5.67 \times 10^{-8} \mathrm{Wm}^{-2} \mathrm{~K}^{-4}
$$

In other words, if a blackbody at absolute temperature T is surrounded by another blackbody at absolute temperature T_{0} then the net rate of loss of heat energy per unit area of the surface per unit time in

$$
E=\sigma\left(T^{4}-T_{0}^{4}\right)
$$

Note that this in in accordance with" Prevost's theory of heat. exdange" that states, "the net loss of heat is the difference in the heat radiated by the hot body and the heat absorbed by it from its surroundings." Stefan's law refers to the emission of heat radiation only by the blackbody and not to the net loss of heat by the blackbody after heat exchange with its surroundings.

In 1884, Boltzmann theoretically proved Stefan's law using Thermodynamics. Suppose an encloser of volume V in filled with radiation at uniform temperature T. \mathbb{E} the energy density of radiation so that total internal energy is $U=E V$. Suppose $d Q$ amount of heat is flowed into the enclosure from outside so that the volume changed to $v+d v$.

Using first law of T.D. $d Q=d U+P d V$ and Maxwell's thermodynamic relation $\left(\frac{\partial Q}{\partial V}\right)_{T}=T\left(\frac{\partial P}{\partial T}\right)_{V}$ we have

$$
\left(\frac{\partial U+\rho \partial V}{\partial V}\right)_{T}=T\left(\frac{\partial P}{\partial T}\right)_{V}
$$

$$
\text { * }\left(\frac{\partial U}{\partial V}\right)_{T}=T\left(\frac{\partial P}{\partial T}\right)_{V}-P
$$

using $P=\frac{1}{3} E$ and $U=E V$, we have $\left(\frac{\partial U}{\partial V}\right)_{T}=E,\left(\frac{\partial P}{\partial T}\right)_{V}=\frac{1}{3}\left(\frac{\partial E}{\partial T}\right)_{V}$

$$
\begin{aligned}
& \therefore E=\frac{T}{3} \frac{d E}{d T}-\frac{E}{3} \quad \frac{4 E}{3}=\frac{T}{3} \frac{d E}{d T} \\
& \therefore \quad \int \frac{d E}{E}=4 \int \frac{d T}{T}+\text { constant or } \ln E=4 \ln T+\ln \sigma \\
& \text { co } E=\sigma T^{4}
\end{aligned}
$$

Newton's law of cooling
Stefan's law is applicable for all temperatures but Newton's law is applicable when temperature difference between blackbody \& surrounding \therefore small. If T_{1} i hotbody's temperature which is placed in an enclosure at T_{2} then from Stefan's law

$$
E=\sigma\left(T_{1}^{4}-T_{2}^{4}\right)=\sigma\left(T_{1}-T_{2}\right)\left(T_{1}^{3}+T_{1}^{2} T_{2}+T_{1} T_{2}^{2}+T_{2}^{3}\right)
$$

while $\left(T_{1}-T_{2}\right)$ is small, $T_{1} \approx T_{2}$ so tat $T_{1}^{2} T_{2} \sim T_{2}^{3}$ \& soon

$$
\begin{aligned}
\therefore E & =r\left(T_{1}-T_{2}\right)\left(T_{2}^{3}+T_{2}^{3}+T_{2}^{3}+T_{2}^{3}\right) \\
& ={\underset{k}{4 \sigma T_{2}^{3}}\left(T_{1}-T_{2}\right)=k\left(T_{1}-T_{2}\right)}^{\sim}=
\end{aligned}
$$

$$
\therefore \quad E \propto\left(T_{1}-T_{2}\right)
$$

Distribution of Energy in Blackbody Spectrum
Energy is not uniformly distributed. for isothermals, and exhibits a maxima at a particular wavelength. If λ_{m} is the wavelength for which the emitted energy is maximum, then Wien's displacement law states that $\lambda_{m}{ }^{T}=$ constant.

for all wavelengths, increase in temperature heads lo inerizose in energy emission. Area under each curve represents total anergy emitted \& is found to be directly proportional ls T^{4}, or $E \propto T^{4}$ which is the Stefan. Boltzmann's law.
Wien's Displacement law
When an electric wire is heated, at $500^{\circ} \mathrm{C}$ it is duet red, at soc ${ }^{\circ}$ its cherry red, at $1100^{\circ} \mathrm{C}$ its orange red, at $1250^{\circ} \mathrm{C}$ its yellows and at $>1600^{\circ} \mathrm{C}$ becomes white. So as the temperature is raised, the maximum intensity of emission is displaced towards the shorter wavelength. Wien law is $\lambda_{m} T^{\prime}=$ constant $=0.2892 \mathrm{cmiK}$.

$$
E_{m} \propto T^{5} \quad \infty \quad E_{m} T^{-5}=\text { constant }
$$

This can be combined with stefan's law in one form as

$$
E_{\lambda}=c \lambda^{-5} f(\lambda T)
$$

wien derived that $E_{\lambda} d \lambda=k \lambda^{-5} e^{-a / \lambda T} d \lambda$. This law hold, good only at shorter wavelength $\&$ lower temperature, but de net hold good at longer wavelength \& higher temperature.
Rayleigh - Jeans law \& the UV Catastrophe:
According to RJ law, $E_{\lambda} d \lambda=\frac{8 \pi k_{B} T}{\lambda^{4}} d \lambda$. This law holds good at longer wavelengths at higher temperatures and not good at shorter wavelengths.

Writing $\lambda=\frac{c}{y}$ or $d \lambda=\frac{c}{y^{2}} d y$

using $R J$ law we can write

$$
\begin{aligned}
d E & =E_{\partial} d \lambda=\frac{8 \pi K_{B} T}{c^{4}} \nu^{4} \frac{c}{\nu^{2}} d \gamma \\
& =\frac{8 \pi \nu^{2} K_{B} T}{c^{3}} d \gamma
\end{aligned}
$$

Scanned by CamScanner

For $\nu \rightarrow \infty, \quad d E \rightarrow \infty$ is a direct contradiction to experimental observations \rightarrow "ultraviolet Catastrophe". Again, $E=\int_{0}^{\infty} \frac{8 \pi \nu^{2} k_{B} T d \gamma}{c^{3}} \rightarrow \infty$ which is contradiction to stefan's law.
Thus before 1900, UV catastrophe was the biggest failure of classical physics until Max Planck, who used quantum mechanises idea to treat radiation as emitted quanta of energy $h v$. According to his treatment

$$
\begin{aligned}
& E_{\nu} d \nu=\frac{8 \pi h}{c^{3}} \frac{\nu^{3} d \nu}{e^{h \nu / k_{B} T}-1} \\
& E_{\lambda} d \lambda=\frac{8 \pi h c}{\lambda^{5}} \frac{d \lambda}{e^{h c / \lambda K_{B} T}-1}
\end{aligned}
$$

$$
h=6.626 \times 10^{-34} \mathrm{Js}
$$

$$
=\text { Planck's constant. }
$$

This is called Planck's Radiation law, that agrees perfectly with experiments. Planck's quantum postulates say that

(a) A radiation enclosure can be imagined as a collection of resonators (simple harmonic oscillators) that can vibrate at all frequencies. (b) Resonators cannot radiate/absorb energy continuously but in the form of quanta-packets (photons). Each photon has energy $h \nu$ so that energy emitted/absorbed is $0, h \nu, 2 h \nu, \ldots, n h \nu$ or "quantum".
(1) $\lambda \ll$ (short wavelength) Planck's Radiation law

$$
\begin{aligned}
E_{\lambda} d \lambda & =\frac{8 \pi h c}{\lambda^{5}} \cdot \frac{d \lambda}{h c / \lambda k_{B} T}-1
\end{aligned} \frac{\frac{8 \pi h c}{\lambda^{5}} \frac{d \lambda}{e^{h c / \lambda k_{B} T}}}{}=\frac{8 \pi h c}{\lambda^{5}} e^{-h c / \lambda k_{B} T} d \lambda \Rightarrow{ }^{n} \text { Wien's displacement law". }
$$

Planck's radiation law $E_{\lambda} d \lambda=\frac{8 \pi h c}{\lambda^{5}} \frac{d \lambda}{1+\frac{h c}{\lambda K_{B} T}-1}=\frac{8 \pi K_{B} T}{\lambda^{4}} d \lambda$
\Rightarrow Rayleigh -Jeans law."

Solar Constant
It is the amount of radiation absorbed per unit time per unit area of a blackbody placed at a mean distance between sun \& earth in the absence of atmosphere with the surface held normal to the sundays.

If mean distance between sun \& earth $=R$, solar convent $=S$
\therefore Total amount of radiation received by the sphere in 1 minute $=4 \pi R^{2} S$.

If $\gamma=$ sun's radius then radiation by 1 square an surface in 1 minute $E=\frac{4 \pi R^{2} S}{4 \pi r^{2}}$

$$
r=6.928 \times 10^{5} \mathrm{~km}, \quad R=148.48 \times 10^{7} \mathrm{~km}, \quad S=1.94 \mathrm{cals} / \mathrm{cm}^{2} / \text { minute }
$$

$$
\begin{aligned}
& E=\frac{\left(148.48 \times 10^{7}\right)^{2}}{\left(6.928 \times 10^{5}\right)^{2}} \times \frac{1.94}{60} \text { cals/second. } \\
& =\text { from Stefan's law } E=\sigma T^{4}=\frac{5.75 \times 10^{-5}}{4.2 \times 10^{7}} T^{4} \text { as } \\
& O=5.75 \times 10^{-5} \text { Ergs } / \mathrm{cm}^{2} / \text { dec }^{4}=\frac{5.75 \times 10^{-5} \text { coals }}{4.2 \times 10^{7}} / \mathrm{cm}^{2} / \text { deg }
\end{aligned}
$$

Equating, $\frac{\left(148.48 \times 10^{7}\right)^{2}}{\left(6.928 \times 10^{5}\right)^{2}} \frac{1.94}{60}=\frac{5.75 \times 10^{-5}}{4.2 \times 10^{7}} \mathrm{~T}^{4}$

$$
\therefore T=5730 \mathrm{~K} .
$$

The photosphere of sun (outer surface) is approximately 600 K . Calculated value yields the effective temperature when sun acts as a lelackbody radiator.

This can also be calculated from Wien's displacement law

$$
\begin{aligned}
\lambda_{m} T & =0.2892 . \quad \lambda_{m}=4900 \times 10^{-8} \mathrm{~cm} \text { (maximum in sputum) } \\
\text { r } T & =5902 \mathrm{~K} .
\end{aligned}
$$

CW 1. (a) Two large closely spaced concentric spheres (blackbody radiator) are kept at temperature 200 K \& 300 K \& the in between space is vacuum. Calculate the net rate of energy transfer between the two spheres. (b) Calculate the radiant emittance of a blackbody at temperatures 400 K \& 4000 K . Given $\sigma=5.672 \times 10^{-8}$ M.K.S. units.
(a) $T_{1}=300 \mathrm{~K}, T_{2}=200 \mathrm{~K} \quad \therefore$ from Stefan's law, net rate of energy transfer $E=\sigma\left(T_{1}^{4}-T_{2}^{4}\right)$

$$
=5.672 \times 10^{-8}\left(300^{4}-200^{4}\right)=368.68 \text { watts } / \mathrm{m}^{2}
$$

(b) for $T=400 \mathrm{~K}$,

$$
\begin{aligned}
E=5.672 \times 10^{-8} \times 400^{4} & =1452 \text { watts } / \mathrm{m}^{2} \\
E=5.672 \times 10^{-8} \times 4000^{4} & =1452 \times 10^{4} \text { watts } / \mathrm{m}^{2} \\
& =14520 \text { kilo watts } / \mathrm{m}^{2}
\end{aligned}
$$

$$
\text { for } T=4000 \mathrm{~K}, E=5.672 \times 10^{-8} \times 4000^{4}=1452 \times 10^{4} \text { wats } / \mathrm{m}^{2}
$$

2. An aluminium foil is placed between two concentric spheres (blackbody radiators $)$ at temperatures $300 \mathrm{~K} \& 200 \mathrm{~K}$. Calculate the temperature of the foil in the steady state. Also calculate the rate of energy prancer between one of the spheres and the foil.

If x is the temperature of foil in steady state then we have using stefan's law,

$$
\sigma\left(T_{1}^{4}-x^{4}\right)=\sigma\left(x^{4}-T_{2}^{4}\right)
$$

here $T_{1}=300 \mathrm{~K}, T_{2}=200 \mathrm{~K}$. or, $\quad 300^{4}-x^{4}=x^{4}-200^{4}$

$$
\Leftrightarrow \quad x=263.8 \mathrm{~K} .
$$

\therefore Rate of energy banefer $E=\sigma\left(T_{1}^{4}-x^{4}\right)$

$$
\begin{aligned}
& =\sigma\left(T_{1}-x\right) \\
& =5.672 \times 10^{-8}\left(300^{4}-263.8^{4}\right) \\
& =185 \text { watts } / \mathrm{m}^{2}
\end{aligned}
$$

[N.B. If relative emittance is mentioned (say $e=0.1$) then

$$
\left.E=\operatorname{e\sigma }\left(T_{1}^{4}-x^{4}\right)=18.5 \text { watts } / \mu_{1}^{2}\right]
$$

3. Obtain the number of modes of vibration per unit volume in the wavelength range $4990 \AA$ to $5010 \AA$ for a cubic shaped cavity of a blackbody.

Naunber of modes/volume within $\lambda \& \lambda+d \lambda$
$W=\frac{E_{\lambda} d \lambda}{k_{B} T}=\frac{8 \pi d \lambda}{\lambda^{4}}$ using Rayleigh. Jean's law.

$$
\begin{aligned}
& \lambda=5000 \dot{A}=5000 \times 10^{-8} \mathrm{~cm}, d \lambda=(5010-4990)=20 A_{B}=20 \times 10^{-8} \mathrm{~cm} \\
& \cdots=\frac{8 \times 3.14 \times 20 \times 10^{-8}}{\left(5000 \times 10^{-8}\right)^{4}}=8.038 \times 10^{11} / \mathrm{cc}
\end{aligned}
$$

[Same thing, if asked frequency rage say $4 \times 10^{14} \& 4.01 \times 10^{14} \mathrm{see}^{-1}$ for a chamber of volume 50 ce , then $n=\frac{8 \pi \nu^{2} d \nu}{c^{3}}=1.5 \times 10^{11} / \mathrm{ce}$ and tolat number of modes in $V=50 \mathrm{ce}=1.5 \times 10^{11} \times 50$

$$
=7.5 \times 10^{12}
$$

HW. 1. If a lelack body at a temperature 6174 K emits 4700 A with maximum energy, calculate the temperature at which it will emit a wavelength of $1.4 \times 10^{-5} \mathrm{~m}$ with maximum energy.
2. Using Stefan's law, calculate the total radiant energy emitted by Sun/second. Also calculate the rate at which energy is reaching the top of earth's atmosphere. Given radius of sun $=7 \times 10^{8} \mathrm{~m}$ \& distance of earth's atmosphere from sun $=1.5 \times 10^{11} \mathrm{~m}$ and $\operatorname{sun}($ blackbody) temperature $=5800 \mathrm{~K}$.
3. The order of magnitude of the energy received from sun at earth's surface : 10^{-1} Joule $/ \mathrm{cm}^{2}$ see. Calculate the order of magnitude of the total force due to solar radiation on the earth (perfectly absorbing). given earth's diameter $=10^{7}$ metre, \& radiation pressure $p=\frac{E}{C}$.

